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ABSTRACT
One-shot automated essay scoring (AES) aims to assign scores
to a set of essays written specific to a certain prompt, with only
one manually scored essay per distinct score. Compared to the
previous-studied prompt-specific AES which usually requires a
large number of manually scored essays for model training (e.g.,
about 600 manually scored essays out of totally 1000 essays), one-
shot AES can greatly reduce the workload of manual scoring. In this
paper, we propose a Transductive Graph-based Ordinal Distillation
(TGOD) framework to tackle the task of one-shot AES. Specifically,
we design a transductive graph-based model as a teacher model to
generate pseudo labels of unlabeled essays based on the one-shot
labeled essays. Then, we distill the knowledge in the teacher model
into a neural student model by learning from the high confidence
pseudo labels. Different from the general knowledge distillation,
we propose an ordinal-aware unimodal distillation which makes a
unimodal distribution constraint on the output of student model,
to tolerate the minor errors existed in pseudo labels. Experimental
results on the public dataset ASAP show that TGOD can improve
the performance of existing neural AES models under the one-shot
AES setting and achieve an acceptable average QWK of 0.69.
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1 INTRODUCTION
Automated Essay Scoring (AES) aims to summarize the quality of
a student essay with a score or grade based on the factors such
as grammaticality, organization, and coherence. It is commercially
valuable to be able to automate the scoring of millions of essays. In
fact, AES has been developed and deployed in large-scale standard-
ized tests such as TOEFL, GMAT, and GRE [2]. Besides evaluating
the quality of essays, as an evaluation technique of text quality, AES
can also be used conveniently to evaluate the quality of various
Web texts (e.g., news, responses, and posts).

Research on automated essay scoring has spanned the last 50
years [25], and still continues to draw a lot of attention in the natu-
ral language processing community [17]. Traditional AES methods
mainly rely on various handcrafted-features and score essays based
on regression methods [2, 19, 26, 32, 48]. Recently, with the de-
velopment of deep learning technology, many models based on
LSTM and CNN have been proposed [7, 8, 10, 39, 41]. These models
can automatically learn the features of essays and achieve better
performance than traditional methods.

However, to train an effective neural AES model, it often needs
a large number of manually scored essays for model training (e.g.,
about 600 manually scored essays out of totally 1000 essays in a
test), which is labor intensive. This limits its application in some
real-world scenarios. To this end, some recent work considers using
the scored essays under other prompts (i.e., topic of writing essay)
to alleviate the burden of manual scoring under target prompt. But
due to the difference among prompts such as genre, score range,
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topic, and difficulty, these cross-prompt methods often perform
worse than the prompt-specific methods [9]. Tackling the domain
adaptation among prompts is a challenging problem and there are
some recent studies focusing on this line of work [5, 14].

In this paper, we consider another way without using data from
other prompts. Given a set of essays towards a target prompt, we
consider if we can score all essays only based on a few manually
scored essays. Extremely, we consider the one-shot scenario, that
is, only one manually scored essay per distinct score is given. In
practical writing tests, scoring staff usually evaluates the essays
by first designing a criteria specific to the current test and then
applying the criteria for essays scoring. To alleviate the burden
of scoring staff, we expect to firstly let the scoring staff express
the criteria by one-shot manual scoring, and then use a specially-
designed AESmodel to scoring the rest essays based on the one-shot
data.

One-shot AES is a challenging task, since the one-shot labeled
data is insufficient to train an effective neural AES model. To solve
this problem, our intuition is whether we can augment the one-
shot labeled data with some pseudo labeled data, and then perform
model training on the augmented labeled data. Obviously, there
are two challenges: one is how to acquire the pseudo labeled data,
and the other is how to alleviate the disturbance brought by error
pseudo labels during model training.

To this end, we propose a Transductive Graph-based Ordinal
Distillation (TGOD) framework for one-shot automated essay scor-
ing, which is designed based on a teacher-student mechanism (i.e.,
knowledge distillation) [13]. Specifically, we employ a transduc-
tive graph-based model [52, 53] as the teacher model to generate
pseudo labels, and then train the neural AES model (student model)
by combining the pseudo labels and one-shot labels. Considering
that there may exist many error labels among the pseudo labels,
we select the pseudo labels with high confidence to improve the
quality of pseudo labels. Besides, considering that the score is at
ordinal scale and an essay is easily to be assigned a score near its
ground-truth score (e.g., 3 is easily to be predicted as 2 or 4), we
proposed an ordinal-aware unimodal distillation strategy to tolerate
some pseudo labels with minor errors.

The major contributions of this paper are summarized as follows:

• For the one-shot automated essay scoring, we propose a
distillation framework based on graph propagation, which
alleviates the requirement of supervised neural AES model
on labeled data by utilizing unsupervised data.

• We propose the label selection and the ordinal-aware uni-
modal distillation strategies to alleviate the effect of error
pseudo labels on the final AES model.

• The TGOD framework has no limitation on the architecture
of student model, thus can be applied to many existing neu-
ral AES models. Experimental results on the public dataset
demonstrate that our framework can effectively improve the
performance of several classical neural AES models under
the one-shot AES setting.

2 PROBLEM DEFINITION
We first introduce some notation and formalize the one-shot auto-
mated essay scoring (AES) problem. Let X = {xi }

N
i=1 denote a set

of essays written to a certain prompt,Y = {1, 2, ...,K} denote a set
of pre-defined scores (labels) at ordinal scale, and (x ,y) denote an
essay and its ground-truth score (label) respectively. For one-shot
AES, we assume that we are given a set of one-shot labeled data
Do = {(xi ,yi = i)}Ki=1, where the set Xo = {xi |(xi ,yi ) ∈ Do } is
a subset of X (i.e., Xo ∈ X), and the essay x ∈ Xo with y = i is
the one-shot essay for the distinct score (label) i ∈ Y. Apart from
the one-shot labeled essays Xo , the rest essays in X constitute the
unlabeled essay set Xu = {xi }

Nu
i=1, and thus Xu ∪Xo = X. The goal

of one-shot AES is to learn a function F to predict the scores (labels)
of the unlabelled essays x ∈ Xu , based on the one-shot labeled data
Do and essay set X, by

ŷ = F (x ;Do ,X). (1)

Typical AES approaches based on supervised learning would
remove X and replace Do with a statistic θ∗ = θ∗(Do ) in Eq. 1,
since they can usually learn a sufficient statistic θ∗ for prediction
pθ ∗ (y |x) only based on labeled data Do . However, the one-shot
setting is never the case, since only few labeled data is given in Do ,
which is insufficient to train a statistic θ∗ with good generalization.
We therefore exploit both the one-shot labeled data Do and the
unlabeled essays Xu ∈ X to learn the prediction function F , and
thus adopt the more general form of F in Eq. 1.

3 THE TGOD FRAMEWORK
In this section, we introduce the proposed TGOD framework, fol-
lowed by its technical details.

3.1 An Overview of TGOD
TGOD is designed based on the teacher-student mechanism. It
can enable a supervised neural student model to benefit from a
semi-supervised teacher model under the one-shot essay scoring
setting. While the one-shot labeled data is insufficient to train the
supervised neural student model, the student model can be trained
by distilling the knowledge of the semi-supervised teacher model
on the unlabeled essays. Through a specially-designed ordinal dis-
tillation strategy, the supervised neural student model can even
outperform the semi-supervised teacher model.

Specifically, as shown in Figure 1, TGOD contains three main
components: the Teacher Model which exploits the manifold struc-
ture among labeled and unlabeled essays based on graphs and
generates pseudo labels of unlabeled essays for distillation; the Stu-
dent Model which tackles the essay scoring problem as an ordinal
classification problem and makes a unimodal distribution predic-
tion for essays; the Ordinal Distillation which distills the unimodal
smoothed Teacher Model’s outputs into the Student Model. In the
following, we introduce these components of TGOD with technical
details.

3.2 Graph-Based Label Propagation (Teacher)
We introduce the Teacher Model illustrated in Figure 1, which is a
graph-based label propagation model and consists of three com-
ponents: multiple graph construction that models the relationship
among essays from multiple aspects; label propagation that spreads
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Figure 1: Architecture of the Transductive Graph-Based Ordinal Distillation (TGOD) framework.

labels from the one-shot essays to the unlabeled essays; label guess-
ing that generates the pseudo labels of unlabeled essays from results
of multiple graph propagation.

3.2.1 Multiple Graphs Construction. To construct a graph on
the essay set X, we need first to extract the feature embedding of
each essay xi ∈ X. Specifically, we employ an embedding layer
followed by a mean pooling layer as the essay encoder fe (·) to
extract the feature embedding fe (xi ) of essay xi .

Based on the feature embedding of essays, we then construct
a neighborhood graph G = (V ,E,W ) for the essay set X, where
V = X denotes the node set, E denotes the edge set, andW denotes
the adjacent matrix. To construct an appropriate graph, we employ
the Gaussian kernel function [53] to calculate the adjacent matrix
W :

Wi j = exp
(
−
d
(
fe (xi ), fe (x j )

)
2σ 2

)
, (2)

where d(·, ·) is a distance measure (e.g., Euclidean distance) and σ
is a length scale parameter.

To construct a k-nearest neighbor graph, we only keep the k-
max values in each row ofW , and then apply the normalized graph
Laplacians [6] onW :

S = D− 1
2WD− 1

2 , (3)

where D is a diagonal matrix with its (i, i)-value to be the sum of
the i-th row ofW .

While using different pre-trained word embeddings as the em-
bedding layer may result in different k-nearest neighbor graphs,
we can construct B graphs by using B types of pre-trained word
embeddings (e.g., Word2Vec [20], GloVe [28], ELMo [31], BERT
[43]).

3.2.2 Label Propagation. We now describe how to get predic-
tions for the unlabeled essays set Xu using label propagation [23].

Let F denote the set of N × K sized matrix with nonnegative
entries. We define a label matrixY ∈ F withYi j = 1 if xi is from the

one-shot essaysXo and labeled asyi = j , otherwiseYi j = 0. Starting
fromY , label propagation iteratively determines the unknown labels
of essays inXu according to the graph structure using the following
formulation:

F t+1 = αSF t + (1 − α)Y , (4)
where F t ∈ F denotes the predicted labels at the timestamp t , S
denotes the normalized weight, and α ∈ (0, 1) controls the amount
of propagated information. It is well known that the sequence {F t }
has a closed-form solution as follows:

F ∗ = (I − αS)−1Y , (5)

where I is the identity matrix [52].

3.2.3 Label Guessing. For each unlabeled essay in Xu , we pro-
duce a "guess" for its label based on the predictions of label propa-
gation on multiple graphs. This guess is later used as pseudo label
of unlabeled essay for knowledge distillation.

To do so, we first compute the average of the label distributions
predicted by label propagation on all the B graphs by

Y ′ =
1
B

B∑
b=1

F ∗Gb
, (6)

where Y ′ denotes the averaged label distribution matrix, and F ∗Gb
denotes the final label distribution matrix generated by applying
label propagation on graph Gb .

Then, for each unlabeled essay xi ∈ Xu , its pseudo label y′i is
obtained as follows:

y′i = argmax
1≤j≤K

Y ′
i j , (7)

where Y ′
i j denotes the j-th element of the i-th row vector of Y ′.

3.3 Ordinal-Aware Neural Network (Student)
We introduce the Student Model illustrated in Figure 1, which is
an ordinal-aware neural network model and consists of two main
components: essay encoder that extracts the feature embedding
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of the input essay; ordinal classifier that predicts a unimodal label
distribution on the pre-defined scores for each input essay.

3.3.1 Essay Encoder. We employ a neural network fφ (·) to ex-
tract features of an input xi , where fφ (xi ;φ) refers to the essay
embedding and φ indicates the parameters of the network. This
module is not limited to a specific architecture and can be var-
ious existing AES encoders. To demonstrate the universality of
our framework and provide more fair comparisons in the experi-
ments, we adopt the encoders adopted in some recent work (e.g.,
CNN-LSTM-Att [9], HA-LSTM [5], BERT [5]).

3.3.2 Unimodal Ordinal Classifier. Unlike previous neural net-
work based AES models which predict the score of the input essay
by using a regression layer (i.e. a one-unit layer), we view the essay
scoring as an ordinal classification problem and adopt an ordinal
classifier [3] for prediction.

To capture the ordinal relationship among classes, the unimodal
probability distribution (i.e., the distribution has a peak at class k
while decreasing its value when the class goes away from k) is usu-
ally used to restrict the shape of the predicted label distributions.
According to previous studies [3, 22], some special exponential
functions and the probability mass function (PMF) of both Pois-
son distribution and binomial distribution can be used to enforce
discrete unimodal probability distribution.

In our framework, we choose an extension of the binomial dis-
tribution, Conway–Maxwell binomial distribution (CMB) [16], as
the base distribution, and employ the PMF of the CMB to generate
the predicted unimodal probability distribution of essay xi :

P(yi = k) =
1

S(p,υ)

(
K − 1
k − 1

)υ
pk−1(1 − p)K−k , (8)

where

S(p,υ) =
K∑
k=1

(
K − 1
k − 1

)υ
pk−1(1 − p)K−k . (9)

Here k ∈ Y = {1, 2, . . . ,K}, 0 ≤ p ≤ 1, and −∞ ≤ υ ≤ ∞. The
parameter υ can be used to control the variance of the distribution.
The case υ = 1 is the usual binomial distribution.

To be more specifically, we now describe the neural network
architecture of the employed ordinal classifier based on the PMF of
the CMB. As shown in Figure 1, the essay encoder is followed by a
linear layer which transforms the essay embedding into a number
υ ∈ R and a probability p ∈ [0, 1] (by using sigmoid activation func-
tion). The linear layer is then followed by a ‘copy expansion’ layer
which expands the probability p into K probabilities corresponding
to K distinct scores, that is, pk=1 = pk=2 = · · · = pk=K . The follow-
ing layer then applies the ‘Log CMB PMF’ transformation on these
probabilities with different k :

LCP(k ;υ,p) = υ log
(
K − 1
k − 1

)
+ (k − 1) logp

+ (K − k) log (1 − p),

(10)

where the log operation is used to address numeric stability is-
sues. Finally, a softmax layer is applied on the logit, LCP(k ;υ,p), to
produce a unimodal probability distribution Ŷi for essay xi :

Ŷik =
eLCP (k ;υ,p)∑K
k=1 e

LCP (k ;υ,p)
, (11)

where Ŷik denotes the k-th element of Ŷi . Based on Ŷi , the final
predicted label ŷi of essay xi can be obtained by:

ŷi = argmax
1≤k≤K

Ŷik . (12)

3.4 Ordinal Distillation
We introduce the Ordinal Distillation illustrated in Figure 1, which
distills the pseudo-label knowledge of Teacher Model into the Stu-
dent Model, and consists of three main steps: label selection that
selects high confidence pseudo-labels for later distillation; unimodal
smoothing that enforces the label distribution of pseudo-label to be
a unimodal probability distribution; unimodal distillation that min-
imizes the KL divergence between the predicted label distribution
of Student Model and the unimodal smoothed label distribution of
Teacher Model.

3.4.1 Label Selection. Considering that only one-shot labeled
data is available for label propagation, the pseudo labels generated
by Teacher Model may be noisy. Therefore, we propose a label
selection strategy to select a subset of pseudo labels with high
confidence.

Specifically, for each distinct score k ∈ Y, we first collect all
corresponding pseudo labels, that is, Ck = {y′i |y

′
i = k,xi ∈ Xu },

and then rank these pseudo labels Ck according to their confidence.
We measure the confidence of a pseudo label y′i by calculating
the negative Shannon entropy of its corresponding label distribu-
tion (Eq. 13), so that a peaked distribution may tend to get a high
confidence.

Confidence(y′i ) = −H(Y ′
i ) =

K∑
j=1

Y ′
i j log2 Y

′
i j (13)

After that, we select topmk pseudo labels with high confidence
from Ck by

mk = min (|Ck |,max(a, |Ck | × γ )) , (14)

where the threshold ratio γ and the threshold number a are set to
ensure a sufficient number of pseudo labels are selected in the end
and avoid serious class imbalance problem.

3.4.2 Unimodal Smoothing. Previous studies on knowledge dis-
tillation [13, 49] have shown that a soft or smoothed probability
distribution from teacher model is more suitable for knowledge
distillation than one-hot probability distribution. Considering that
essay scoring is an ordinal classification problem and an essay is
more likely to be mispredicted as a score close to the ground-truth
score, we enforce the distribution of pseudo labels produced by
teacher model to be a unimodal smoothed probability distribution.

As mentioned before, some special exponential functions [22]
can be used to enforce discrete unimodal probability distribution.
Therefore, we employ an exponential function to perform the uni-
modal smoothing on both one-shot labels and pseudo labels:

q′(yi = k |xi ) =


exp( −|k−yi |τ )∑K
j=1 exp(

−|j−yi |
τ )

xi ∈ Xo

exp(
−|k−y′i |

τ )∑K
j=1 exp(

−|j−y′i |
τ )

xi ∈ Xu

, (15)
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Algorithm 1 The Training Flow of TGOD
Input: The whole set of essays X, one-shot labeled data Do .
Output: An optimized student model.

Run the Teacher Model:
Construct multiple graphs G∗ = {G1,G2, . . . ,GB } on X.
for each Gb ∈ G∗ do
Apply label propagation algorithm on Gb as Eq. 5.

end for
Generate pseudo labels by label guessing as Eq. 6 and 7.
Train the Student Model by Ordinal Distillation:
Select the pseudo labels with high confidence by Eq. 13 and 14.
Smooth the selected labels as Eq. 15.
Split selected essays into training set Dt and validation set Dv .
for all iter=1,. . . ,MaxIter do

Optimize the student model on Dt by minimizing Eq. 16.
Validate the student model on Dv

end for
return The student model with best performance on Dv

where k ∈ Y and τ is a parameter used to control the variance of
the distribution.

3.4.3 Unimodal Distillation. Since the one-shot labeled data
Do is not sufficient to train a neural network, we use the pseudo
labels produced by teacher model as a supplement to train the
student model.

Specifically, we train the student model by matching the output
label distribution of student model q̂(xi ) = Ŷi and the unimodal
smoothed pseudo label of teacher model q′(xi ) via a KL-divergence
loss:

LOD =
∑

xi ∈Xs

DKL
(
q̂(xi )| |q

′(xi )
)
, (16)

where Xs denotes the set of essays from either one-shot data or the
selected essays after label selection.

3.5 Training Flow of TGOD
In summary, there are two steps in TGOD to train the Student Model
under the one-shot setting, i.e., first generating pseudo labels of
unlabeled essays by running the Teacher Model, and then training
the Student Model by Ordinal Distillation. The whole training flow
of TGOD is illustrated in Figure 1 and Alg. 1.

In particular, considering that model selection is difficult to im-
plement under the one-shot supervised setting, we design a model
selection strategy based on pseudo labels, which validates the model
on a subset of pseudo labels.

4 EXPERIMENTS
In this section, we first introduce the dataset and evaluation metric.
Then we illustrate the experimental settings, the implementation
details, and the performance comparison. Finally, we conduct ab-
lation study and model analysis to investigate the effectiveness of
our proposed approach.

Table 1: Statistics of the ASAP datasets. For column Genre,
ARG denotes argumentative essays, RES denotes response
essays, and NAR denotes narrative essays. The last column
lists the score ranges.

Prompt #Essay Genre Avg Len Range

1 1,783 ARG 350 2-12
2 1,800 ARG 350 1-6
3 1,726 RES 150 0-3
4 1,772 RES 150 0-3
5 1,805 RES 150 0-4
6 1,800 RES 150 0-4
7 1,569 NAR 250 0-30
8 723 NAR 650 0-60

4.1 Dataset and Evaluation Metric
We conduct experiments on a public dataset ASAP (Automated
Student Assessment Prize1), which is a widely-used benchmark
dataset for the task of automated essay scoring. In ASAP, there are
eight sets of essays corresponding to eight different prompts, and a
total of 12,978 scored essays. These eight essay sets vary in essay
number, genre, and score range, the details of which are listed in
Table 1.

To evaluate the performance of AES methods, we employ the
quadratic weighted kappa (QWK) as the evaluation metric, which
is the official metric of ASAP dataset. For each set of essays with
possible scores Y = {1, 2, . . . ,K}, the QWK can be calculated to
measure the agreement between the automated predicted scores
(Rater A) and the resolved human scores (Rater B) as follows:

κ = 1 −
∑
i, j wi, jOi, j∑
i, j wi, jEi, j

, (17)

wherewi, j =
(i−j)2

(K−1)2 is calculated based on the difference between
raters’ scores, O is a K-by-K histogram matrix, Oi, j is the number
of essays that received a score i by Rater A and a score j by Rater B,
and E is calculated as the normalized outer product between each
rater’s histogram vector of scores.

4.2 Experimental Settings
For the setting of ‘one-shot’, we conduct experiments by randomly
sampling the one-shot labeled data to train the model and test the
model on the rest unlabeled essays. To reduce randomness, under
each case, we repeat the sampling of one-shot labeled data 20 times,
and the average results are reported. For our proposed framework,
we perform model selection based on the pseudo validation set.
For other baseline methods, since one-shot labeled data is used for
training and no extra labeled data can be used as a validation set to
perform model selection, we report their best performance on test
set as their upper bound performance for comparison.

For the setting of ‘one-shot+history prompt’, we combine the one-
shot labeled data and the labeled data in a history prompt of the
similar score range (e.g., P1→ P2, P2→ P1, P3→ P4, P4→ P3, and

1https://www.kaggle.com/c/asap-aes/data
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Table 2: The performance (QWK) of all comparison methods on ASAP dataset. The best measures are in bold. † denotes that
the data is referenced from previous studies and the setting is ‘one history prompt + 10 essays from target prompt’. ‘T(·)’ refers
to teacher model and ‘S(·)’ refers to student model.

Setting Method P1 P2 P3 P4 P5 P6 P7 P8 Avg.

One-Shot

TGOD
(Ours)

T(4 Graphs) 0.667 0.525 0.648 0.693 0.734 0.570 0.619 0.447 0.613

S(CNN-LSTM-Att) OCLF + Distill(unimodal) 0.784 0.626 0.652 0.689 0.777 0.651 0.723 0.619 0.690
REG + Distill(score) 0.772 0.617 0.649 0.694 0.773 0.606 0.721 0.608 0.680

S(HA-LSTM) OCLF + Distill(unimodal) 0.792 0.593 0.661 0.689 0.759 0.674 0.738 0.635 0.693
REG + Distill(score) 0.780 0.565 0.674 0.678 0.741 0.667 0.700 0.581 0.673

S(BERT) OCLF + Distill(unimodal) 0.772 0.581 0.690 0.725 0.776 0.691 0.766 0.505 0.688
REG + Distill(score) 0.752 0.571 0.665 0.644 0.773 0.668 0.691 0.577 0.668

AES
Model

BLRR REG 0.731 0.553 0.578 0.644 0.623 0.581 0.583 0.574 0.608

CNN-LSTM-Att OCLF 0.626 0.443 0.352 0.526 0.643 0.475 0.170 0.145 0.422
REG 0.545 0.477 0.202 0.569 0.671 0.493 0.580 0.641 0.522

HA-LSTM OCLF 0.576 0.507 0.617 0.553 0.635 0.585 0.620 0.222 0.539
REG 0.616 0.515 0.338 0.531 0.746 0.649 0.555 0.480 0.554

BERT OCLF 0.695 0.535 0.629 0.621 0.748 0.660 0.706 0.447 0.630
REG 0.704 0.562 0.648 0.631 0.775 0.647 0.687 0.568 0.653

Semi-
Supervised

Model

Label
Propagation

Word2Vec-MoT 0.703 0.525 0.654 0.657 0.627 0.571 0.540 0.429 0.588
GloVe-MoT 0.675 0.552 0.642 0.668 0.686 0.546 0.588 0.385 0.593
ELMo-MoT 0.658 0.382 0.577 0.635 0.583 0.640 0.443 0.422 0.543
BERT-MoT 0.668 0.467 0.603 0.641 0.753 0.545 0.615 0.471 0.595

TSVM

Word2Vec-MoT 0.167 0.423 0.479 0.507 0.619 0.474 0.215 0.188 0.384
GloVe-MoT 0.152 0.435 0.386 0.530 0.547 0.488 0.131 0.135 0.350
ELMo-MoT 0.189 0.327 0.480 0.573 0.541 0.412 0.224 0.109 0.357
BERT-MoT 0.201 0.193 0.523 0.561 0.611 0.450 0.175 0.202 0.365

One-Shot
+

History Prompt

AES
Model

CNN-LSTM-Att Reference Data † − 0.552 − 0.691 − 0.669 − 0.603 −

Re-Implement 0.592 0.553 0.666 0.680 0.690 0.656 0.640 0.565 0.630

HA-LSTM Reference Data † − 0.570 − 0.681 − 0.704 − 0.605 −

Re-Implement 0.633 0.545 0.685 0.683 0.729 0.629 0.281 0.436 0.578

BERT Reference Data † − 0.552 − 0.705 − 0.725 − 0.600 −

Re-Implement 0.661 0.669 0.651 0.698 0.709 0.599 0.725 0.574 0.661

Few-Shot
Model

PROTO NET Meta-training 0.693 0.599 0.676 0.714 0.735 0.612 0.545 0.415 0.624

TPN Meta-training 0.648 0.479 0.663 0.681 0.704 0.575 0.514 0.402 0.583

so on) to train the baseline AES model. For the few-shot models,
we use the data of history prompt as their meta training data.

4.3 Implementation Details
In our TGOD framework, for the teacher model, we adopt four
types of word embeddings (i.e., Word2Vec, GloVe, ELMo, and BERT)
to construct four graphs for label guessing. The dimension of word
embedding is 200. We fix the word embedding during training. The
k for constructing k-nearest neighbor graph is set 20. For label
selection, γ is set to 0.25 and a is set to 50. For label smoothing,
τ is set to 30. For the student model, we adopt three neural AES
models (i.e., CNN-LSTM-Att, HA-LSTM, and BERT) as the student
model. We test the cases of using either the ordinal classifier (OCLF,
adopted by our framework) and the regression layer (REG, used
by the baseline AES models). While using the regression layer, the
smoothed label distribution is replaced by the score of pseudo labels.

For the training of regression based AES models, the ground-
truth scores of essays are rescaled into [0, 1] for regression. To evalu-
ate the results, the predicted scores are rescaled to the original score
range of the corresponding prompts. For the hyper-parameters of
CNN-LSTM-Att and HA-LSTM, the hidden size is set to 100, dropout
is set to 0.5, the Adam optimizer is adopted, and the learning rate is

set to 0.001. For BERT, the ‘uncased BERT-base model’ is adopted,
the Adam optimizer is adopted, and the learning rate is set to 0.001.

4.4 Comparison Methods
As described in Section 3, our framework employs a graph-based la-
bel propagation method as the teacher model and an ordinal-aware
neural network as the student model, which are transductive semi-
supervised model and supervised AES model respectively. Thus,
under the one-shot setting, we compare our models with existing
supervised AES models and semi-supervised models. Considering
that some previous studies on AES have often focused on combin-
ing few data in target prompt and the data in history prompts to
perform essay scoring, we view them as a different one-shot like
setting, named one-shot plus history prompt. In this setting, we
consider the existing AES models and classical few-shot models.

We implement four existing AES models:
• BLRR [32] is based on hand-crafted features, and uses corre-

lated linear regression for prediction.
• CNN-LSTM-Att [9] is a neural AES model based on hierar-

chical architecture and attention mechanism.
• HA-LSTM [5] is a neural AES model based on hierarchical

architecture and self-attention mechanism.
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Table 3: Ablation study of TGOD. The setting ‘−US&OC’means that both unimodal smoothing and ordinal classifier are ablated
from framework and general classification layer is adopted for prediction.

Model Setting P1 P2 P3 P4 P5 P6 P7 P8 Avg.

TGOD(CNN-LSTM-Att) 0.784 0.626 0.652 0.689 0.777 0.651 0.723 0.619 0.690

− label selection (LS) 0.729 0.514 0.665 0.664 0.743 0.668 0.697 0.574 0.657
− unimodal smoothing (US) 0.754 0.532 0.614 0.675 0.743 0.635 0.633 0.351 0.617
− ordinal classifier (OC) 0.736 0.576 0.541 0.656 0.731 0.670 0.705 0.604 0.652

− US&OC ( = only label selection) 0.696 0.500 0.630 0.658 0.637 0.458 0.556 0.439 0.572
− LS&OC ( = only unimodal smoothing) 0.689 0.522 0.665 0.652 0.750 0.622 0.596 0.553 0.631
− LS&US ( = only ordinal classifier) 0.700 0.467 0.654 0.657 0.746 0.547 0.548 0.492 0.601

− all (LS & US & OC) 0.680 0.472 0.661 0.658 0.743 0.556 0.528 0.421 0.590

• BERT [5] is the widely-used pre-training model, which has
been used as an encoder for the task of AES.

We implement two classical semi-supervised models:
•Label Propagation [52] is a graph-based classificationmethod

under transductive setting.
• TSVM [15] is a margin-based classification method under

transductive setting.
We implement two classical few-shot models:
• Protopical Network [37] is a few-shot model based on metric

learning and adopts the episodic training procedure.
• TPN [24] is a transductive few-shot model based on label

propagation and adopts the episodic training procedure.
For our TGOD framework, we implement a baseline that replaces

the ordinal-aware unimodal distillation with linear regression.

4.5 Performance Comparison
As shown in Table 2, the best performance is mostly achieved by our
TGOD framework with using different essays encoders (i.e., CNN-
LSTM-Att, HA-LSTM, and BERT ). By observing TGOD, we can find
the performance of the teacher model (i.e., graph-based label propa-
gation) with 4 graphs is an average QWK of 0.613, based on which,
the student models can greatly outperform the teacher model. This
indicates that the design of learning from graph propagation is
effective for one-shot essay scoring.

By observing the AES models under ‘One-Shot’ setting, we can
find that among the four AES models, BERT performs best, which
can achieve a QWK of 0.630 (by REG, i.e., regression) and 0.653 (by
OCLF, i.e., ordinal classification). Besides, the hand-crafted features
based method BLRR performs better than the CNN-LSTM-Att and
HA-LSTM, but worse than BERT. This may be because that BLRR
does not need to train an essay encoder, and BERT has a pre-trained
encoder. By comparing these three neural AESmodels to our TGODs
with the corresponding essay encoder, we can find that TGOD can
greatly improve their performance under the one-shot setting. To
be more detailed, for each neural AES model, we can find that the
performance of using OCLF (i.e., 0.422, 0.539, and 0.630 for three
neural AES models) is worse than the performance of using REG
(i.e., 0.522, 0.554, and 0.653 for three neural AES models) when
directly trained on one-shot data, but under our TGOD framework,
the performance of using OCLF (i.e., 0.690, 0.693, and 0.688 for three
neural AES models) is better than the performance of using REG
(i.e., 0.680, 0.673, and 0.668 for three neural AES models). This may

be because that ordinal classification is more robust to the weak
labels.

By observing the semi-supervised models, we can find that by
just using word embedding to get the feature of essays, Label Prop-
agation can achieve a better performance than the supervised AES
models. By comparing Label Propagation with single graph to the
teacher model in TGOD with 4 graphs, we can find that an ensemble
of these graphs can produce a better teacher for TGOD than using
only one graph.

By observing the models under the setting ‘One-Shot + History
Prompt’, we can find that even with more labeled data from other
prompt, these models do not outperform our TGOD.

4.6 Ablation Study
We explore the effects of the components designed specific to the
one-shot setting, by removing each of them from TGOD individually.
These components include: label selection (LS), unimodal smoothing
(US), and ordinal classifier (OC). We remove them from TGOD in
three ways: remove one of them, remove two of them, and remove
all of them.

As shown in Table 3, after removing one of them from TGOD,
the performance decreases a lot. This indicates that all of the three
components are important to TGOD. After removing another one
of them from TGOD, the performance continues to decrease. After
removing all of them from TGOD, the performance decreases to a
QWK of 0.590, which is evenworse than the teacher model in TGOD.
This indicates that distilling the pseudo labels to a classification
model without label processing can not prevent the model from
being disturbed by the noises or errors in pseudo labels. In addition,
the performance of ‘− US&OC’ (which means only label selection is
used) is even worse than the performance of ‘− all’. This indicates
that label selection should be used along with other two components
(i.e., US and OC), otherwise, it would fail to benefit the general
classification model (not ordinal aware), and even have a negative
impact on the final performance.

4.7 Model Analysis
In this part, we analyze the effects of the one-shot labeled data and
the graph construction on the performance of TGOD.

4.7.1 Effect of one-shot data selection. For one-shot labeled
data, we first study the impacts of data selection on the performance
of TGOD, that is, whether our TGOD framework is sensitive to the
selection of one-shot essays. To this end, we repeat the sampling of

2353



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhiwei Jiang, Meng Liu, Yafeng Yin, Hua Yu, Zifeng Cheng, and Qing Gu

 

0.4

0.5

0.6

0.7

0.8

Q
W

K

Prompts

Teacher
Student-REG
Student-OCLF

P1 P2 P3 P4 P5 P6 P7 P8 Avg. P1 P2 P3 P4 P5 P6 P7 P8 Avg.

Prompts

0.25

0.35

0.45

0.55

0.65

0.75

0.85

Q
W

K

GloVe
BERT
Word2Vec
ELMo
ALL
Tearcher
Student

(a) (b) (c) (d)

Figure 2: Effects of the one-shot labeled data and the graph construction on the performance of TGOD.

one-shot labeled data 20 times, and record the corresponding per-
formance of TGOD (CNN-LSTM-Att is adopted as the essay encoder)
for each sampling. For comparison, we record the performance of
teacher model (Teacher), regression based student model (Student-
REG), and ordinal classification based model (Student-OCLF ).

As shown in Figure 2(a), the red boxes often have a large vari-
ance, which means that the performance of teacher is sensitive
to the selection of the one-shot labeled data. The blue and green
boxes have an obviously smaller variance than the corresponding
red boxes. This indicates that after the process of label selection
and distillation, the student model is no longer as sensitive to the
selection of one-shot labeled data as teacher model. By comparing
the blue boxes and green boxes, we can find that Student-OCLF is
more robust to the selection of one-shot data than Student-REG.

4.7.2 Effect of using more labeled data. We then study the
impacts of using more labeled data on the performance of TGOD,
that is, whether our TGOD framework can be further improved by
providing more labeled data. To this end, we sample the labeled data
by one-shot, three-shots, five-shots, and ten-shots, and record the
corresponding performance of TGOD (CNN-LSTM-Att is adopted
as the essay encoder) for each setting.

As shown in Figure 2(b), by observing the line of Avg. (with
black color), the overall performance of TGOD shows an upward
trend, and the performance on the ten-shot labeled data has an
improvement of about 0.03 (on QWK) compared to that on the
one-shot labeled data. By observing other eight lines, we can find
that the overall performance of P3 shows a flat trend and P5 shows
a slight downward trend. This may be because that when more
labeled samples are added, the performance bottleneck may be the
quality of graphs in teacher model, and thus the teacher model is
not benefit from using more labeled data.

4.7.3 Effect of combiningmultiple graphs. For the graph con-
struction in teacher model, we first study the impacts of adopting
multiple word embeddings for graph construction on the perfor-
mance of TGOD, that is, whether our TGOD framework is benefit
from combining multiple graphs for label guessing. To this end, we
record the performance of the teacher model (graph propagation)
and the student model (CNN-LSTM-Att) when using each of the
four types of word embeddings and using them together.

As shown in Figure 2(c), by observing the black line, we can find
that its end point (Teacher Model) is higher than that of the other
lines at most cases, regardless of the position of starting point. This

indicates that combining multiple graphs for label guessing is an
effective way to provide pseudo labels with stable quality and thus
improves the performance of the Student Model.

4.7.4 Effect of the graph size. We then study the impacts of
varying the number of essays for graph construction on the per-
formance of TGOD, that is, whether our TGOD framework needs a
large number of unlabeled data for graph construction and pseudo
label generation. To this end, we vary the ratio of essays used for
graph construction from 0.1 to 0.9 step by 0.2.

As shown in Figure 2(d), we can find that all the lines show a
trend that goes up first and then keeps stable after the ratio about
0.3. This indicates that 30% unlabeled essays is enough to run the
teacher model and generate pseudo labels for our TGOD framework.

5 RELATEDWORK
In this section, we introduce briefly the following three research
topics relevant to our work.

5.1 Automated Essay Scoring
Early research on AES mainly focused on the construction of au-
tomated composition scoring systems [11, 26], which mainly com-
bined surface features with regression models for essay scoring.
Since this century, feature engineering has been used to design
abundant linguistic features for essay scoring [29, 30, 38]. More
recently, many neural-based methods have been proposed to learn
the features automatically [1, 8, 9, 34, 39, 41]. Among these methods,
prompt-specific methods are effective but the process of manual
scoring is labor intensive. Generic methods [48] and cross-prompt
neural based methods [5, 9, 14] are thus proposed to alleviate the
burden of manual scoring.

Most of the previous work tackled AES as a regression problem
and used the Mean Square Error (MSE) as loss function for model
training [7, 32, 39]. But they often used Quadratic Weighted Kappa
(QWK) [17, 44] as their metric, which is a metric for ordinal classi-
fication problem. This inconsistency may be because that it is more
complicated to tackle it as an ordinal classification problem [44, 47],
and regression model can usually achieve good performance.

5.2 Knowledge Distillation
Knowledge distillation is originally proposed to transfer the knowl-
edge of a complicated model to a simpler model by training the
simpler model with the soft targets provided by the complicated
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model [13]. Since then, it has been widely adopted in a variety of
learning tasks [18, 35, 46]. Recently, several approaches [27, 36, 50]
have been proposed to improve performance of knowledge distilla-
tion. They address how to extract information better from teacher
networks and deliver it to students using the activations of inter-
mediate layers [36], attention maps [50], or relational information
between training examples [27]. Besides, instead of transferring
information from teacher to student, Zhang et al. [51] proposed a
mutual learning strategy. Our work differs from existing approaches
in that we enforce the student model to learn a unimodal distribu-
tion but not the output distribution of teacher model.

5.3 Semi-Supervised Learning
Semi-Supervised Learning (SSL) aims to label unlabeled data using
knowledge learned from a small amount of labeled data combined
with a large amount of unlabeled data. SSL have two settings: trans-
ductive inference and inductive inference. The setting of transduc-
tive inference was first introduced by [42], which aims to infer the
label of unlabeled data directly from the labeled data. The classical
methods include the Transductive Support Vector Machine (TSVM)
[15] and the graph-based label propagation [12, 52, 53]. Recently,
the neural version of graph-based label propagation has been de-
veloped [24]. The setting of inductive inference aims to train an
inductive model based on both labeled and unlabeled data. It has
a great development in recent years and many effective methods
have been proposed, such as Pseudo-Label [21], Γ Model [33], Mean
Teacher [40], MixMatch [4], UDA [45].

6 CONCLUSION
In this paper, we aim to perform essay scoring under one-shot
setting. To this end, we propose the TGOD framework to train a
student neural AES model through a way of distilling the knowl-
edge of a semi-supervised teacher model. In order to alleviate the
negative effect of error pseudo labels on the student neural AES
model, we introduce the label selection and ordinal distillation
strategies. Experimental results demonstrate the effectiveness of
the proposed TGOD framework for one-shot essay scoring. In the
future, we will try to improve the performance of teacher model
and student model by co-training or self-supervised learning.
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