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Zero-Shot Cross-Modal Retrieval (ZS-CMR) aims to perform cross-modal retrieval on data of unseen classes,
where a key challenge is how to address the modality-gap and domain-shift problems simultaneously. Existing
methods tackle this challenge mainly by embracing a sample-label alignment paradigm, which aligns samples
of different modalities but of the same class with the word embedding of their class label. However, these
methods only focus on the class-level alignment and overlook the alignment of rich fine-grained semantic
information in samples, incurring coarse understanding of sample matching and poor generalization on
unseen classes. In this article, we propose a novel Fine-Grained Alignment Network, an end-to-end framework
that learns representation with two fine-grained alignment strategies, yielding representation space that can
be better generalized to unseen classes. Specifically, we extract two kinds of fine-grained representations,
region embedding and label distribution, respectively, from aspects of both feature and label. To optimize
the region embedding, we propose a Fine-Grained Contrastive Learning (FGCL) strategy to simultaneously
conduct class-level alignment and model the intra-class discrepancy. To optimize the label distribution, we
propose a Fine-Grained Label Alignment (FGLA) strategy to align diverse fine-grained semantic information
among samples, rather than merely label information. Finally, both region embedding and label distribution
are utilized together to perform ZS-CMR at a finer granularity. Experimental results on three widely used
datasets demonstrate that our method outperforms the state-of-the-art methods by a large margin. Detailed
ablation studies have also been carried out, which provably affirm the advantage of each component we
propose. Our code will be available at https://github.com/ShipingGe/FGAN.
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1 Introduction
Cross-Modal Retrieval (CMR) aims to retrieve semantically similar data across different modali-
ties, such as images and text. Traditional CMR methods operate under the closed-world assumption,
where the classes in the test data must have been present during training. However, labeled data for
new classes are often unavailable, and collecting and annotating these data can be time-consuming.
To tackle this challenge, Zero-Shot Cross-Modal Retrieval (ZS-CMR) has been introduced,
which trains a model on seen classes while enabling retrieval for unseen (new) classes [6, 54].
ZS-CMR faces significant challenges, including (1) modality gap, the inconsistency between the
representation spaces of different modalities, and (2) domain shift, which occurs when representa-
tions learned from training data do not generalize well to unseen classes. These two issues adversely
affect the model generalizability in ZS-CMR.

To tackle the modality gap and domain shift issues, most existing methods [6, 27, 54, 57] typically
align data from different modalities into a shared space. They also use word embeddings of class
labels as an auxiliary semantic space to transfer knowledge between seen and unseen classes.
However, these methods perform alignment only at the class level, neglecting the rich semantic
nuances and intra-class discrepancies carried by individual samples, resulting in coarse-grained
alignment. As shown in the left part of Figure 1, while this method ensures that samples within the
same class (e.g., “Bicycle”) are clustered together, it overlooks important details of each individual
samples. The class-level cross-modal alignment can ensure that samples of different modalities, but
within the same class are closely distributed, based on cross-entropy loss [27] or triplet ranking
loss [57]. However, it treats the same-class samples with no difference, ignoring the intra-class
discrepancy. Additionally, while label-sample alignment aims to connect each sample to its cor-
responding label embedding, it fails to account for the semantic diversity of samples. As shown
in the right part of Figure 1, although the query text and Hard Semi-Positive image belong to the
same class, their semantic match is minimal, necessitating that they be distanced in the embedding
space, which shows that each sample may contain more information than just its label. This coarse-
grained alignment, focusing only on label information from seen classes, overlooks the alignment
of fine-grained information, leading to suboptimal generalization to unseen classes.

To achieve better generalization on unseen classes, we propose a fine-grained alignment approach
that simultaneously models intra-class discrepancies and the semantic diversity of samples. As
shown in the right part of Figure 1, we incorporate intra-class alignment to distinguish between
exact and partial matching relationships among same-class samples, allowing distances in the
embedding space to more accurately reflect their fine-grained semantic differences. Furthermore,
to capture the semantic diversity of samples, we extract a fine-grained label distribution defined in
a large label space, such as ImageNet labels, for each sample. By aligning this distribution with the
pseudo ImageNet label distribution obtained from a pre-trained model, we ensure that the label
distribution effectively represents the fine-grained semantic information carried by each sample
(bottom right).

To address the challenges in ZS-CMR, we propose the Fine-Grained Alignment Network
(FGAN), an end-to-end framework designed to learn representations with fine-grained alignment by
jointly modeling intra-class discrepancies and the semantic diversity of samples. FGAN consists of
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Fig. 1. Illustration of coarse-grained vs. our proposed fine-grained alignment strategies in ZSCMR. The
left panel illustrates the traditional coarse-grained alignment approach used in existing methods. In this
scenario, samples from different modalities (e.g., images and text) are aligned based solely on their class
labels, which overlooks the rich semantic diversity and intra-class discrepancies present in the data. The
right panel presents our proposed fine-grained alignment strategy. Unlike the coarse-grained approach, our
method distinguishes between two types of relationships among same-class samples: exact matches (positive
relations) and partial matches (semi-positive relations). The figure demonstrates how our method aligns
positive pairs closely in the embedding space while appropriately distancing semi-positive pairs to reflect
their partial semantic overlap.

three main components: the Fine-Grained Encoder (FGE), Fine-Grained Contrastive Learning
(FGCL), and Fine-Grained Label Alignment (FGLA). FGE extracts two types of fine-grained
features from each input sample: region embeddings and label distributions, in an end-to-end
manner. For learning region embeddings, the FGCL strategy aims to bring samples with positive
relations (exact matches) closer together while pushing samples with semi-positive (partial matches)
or negative relations (different classes) further apart. For learning label distributions, the FGLA
strategy aligns a sample’s label distribution with a pseudo ImageNet label distribution generated
by a pre-trained model. Ultimately, both region embeddings and label distributions can be jointly
utilized for retrieval on unseen classes.

The main contributions of this work can be summarized as follows:
—We propose a novel end-to-end ZS-CMR framework FGAN, which can learn fine-grained
alignment-aware representation for data of different modalities.
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—We develop an FGE along with two fine-grained alignment strategies to jointly model the
intra-class discrepancy and semantic diversity of samples.

—Extensive experiments conducted on three benchmark datasets demonstrate that our FGAN
outperforms the state-of-the-art methods by a significant margin.

2 Related Work
2.1 CMR
CMR aims to retrieve similar instances in onemodality using a query instance from anothermodality
[49, 52, 65]. Therefore, the main challenge of CMR is how to measure the content similarity between
different modalities of data, which is referred to as the heterogeneity gap. Compared with the
traditional retrieval tasks, CMR requires cross-modal modeling, so that the users can retrieve what
they want by submitting what they have [3, 45, 49].

Traditional methods usually utilize the visual Bag-of-Words model (e.g., SIFT BoVW) to rep-
resent image features and match them with text features generated by the language model
(e.g., Word2Vec, Doc2Vec). Rasiwasia et al. [34] employ Canonical Correlation Analysis (CCA)
to learn correlations between different features. Sharma et al. [35] present Generalized Multiview
Analysis, which is a supervised extension of CCA and has the potential to replace CCA whenever
classification or retrieval is the purpose and label information is available. Wang et al. [47] propose
a coupled linear regression framework to deal with the problems of relevance measurement and
feature selection in CMR.

In recent years, deep learning methods become widely adopted in CMR which utilize deep
visual features and deep networks to model the share embedding space. Wang et al. [46] propose a
regularized deep neural network for semanticmapping acrossmodalities to capture both intra-modal
and inter-modal relationships. Wei et al. [52] implement several classic methods with CNN visual
features and achieve better results than previous traditional methods. Zhen et al. [65] minimize
the discrimination loss in both the label space and the common representation space to supervise
the model learning discriminative features. More recently, researchers increasingly concentrate on
more realistic scenarios for CMR. Fang et al. [14] propose the first method to apply prompt tuning
for Universal Cross-Domain Retrieval (UCDR), which employs a two-step process to simulate
content-aware dynamic prompts to produce generalized features for UCDR. Li et al. [25] propose
a novel prototype-based aleatoric uncertainty quantification framework to provide trustworthy
predictions by quantifying the uncertainty arisen from the inherent data ambiguity for CMR. Zhang
et al. [64] introduce a Unified Prompt Generation module to dynamically produce modality-aware
prompt tokens, enabling the perception of prior semantic information on both video and text
inputs for text–video retrieval. Shen et al. [36] present an end-to-end pre-training network with
Hierarchical Matching and Momentum Contrast to explore the hierarchical semantic information
in videos via multilevel semantic matching between videos and texts for text–video retrieval.

2.2 ZS-CMR
ZS-CMR is first proposed by Chi and Peng [6] to achieve retrieval across multiple media types
in zero-shot scenario where there are no overlaps between categories of training and testing
data. The key challenge of ZS-CMR is how to mitigate the modality gap between images and
texts of the same classes and handle the domain-shift problem between seen and unseen classes
[6, 27, 54, 55, 57].

Most existing ZS-CMR methods follow the zero-shot learning paradigm and utilize genera-
tive models (e.g., Generative Adversarial Network (GAN) [17], Variational Autoencoder
(VAE) [22]) and pre-defined class-prototypes to learn common representations for retrieval.
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Chi and Peng [6] propose the first ZS-CMR method, which learns common representations by
mitigating the difference between image representations, text representations, and category word
embeddings using two GANs. Xu et al. [55] use three paralleled sub-networks to capture the
intrinsic data structures of different modalities and leverage word vectors of both seen and unseen
labels as guidance to enhance the knowledge transfer to unseen labels. Lin et al. [27] employ
modality-specific VAEs to learn a shared low-dimensional latent space of input multi-modal fea-
tures. Similarly, Xu et al. [54] utilize category label embeddings to guide WGANs to synthesize
multi-modal features for stable training. Yang et al. [59] propose a bidirectional random walk
scheme to mining reliable relationships between images by traversing heterogeneous manifolds in
the feature space of each modality. Xu et al. [57] combine the strength of AE and GAN to jointly
incorporate common latent space learning, knowledge transfer, and feature synthesis for ZS-CMR.
Wang et al. [48] propose an Instance-Level Semantic Alignment (ILSA)method to make full use
of the instance-level information to mitigate the problem of the ignorance of intra-modal variance.
Tian et al. [40] use two coupled disentanglement VAEs and a fusion exchange VAE to disentan-
gle the original representations of each modality into modality-invariant and modality-specific
features.

Different from most previous methods that utilize label embedding as auxiliary space to learn a
common representation for different modalities, we do not make use of label embedding but learn
both fine-grained region embedding and label distribution for each sample instead. To enhance
the generalization of region embedding on unseen classes, we propose a supervised contrastive
loss to align region embedding at a finer granularity than the class level. Besides, we also use the
label distribution on ImageNet labels to describe the semantic information carried by each sample,
providing more information for retrieval on unseen classes.

2.3 Contrastive Learning
Contrastive learning is a machine learning technique used to learn the general representations of
samples by grouping similar samples closer and dissimilar samples far from each other
[21, 41, 61]. Contrastive learning has recently received interest due to its success in self-supervised
representation learning in the computer vision, natural language processing, and other domains
[24, 29, 51]. Given an anchor data point, the goal of contrastive learning is to pull the anchor close
to positive data points and push it away from negative data points in the latent space [1, 5, 16, 19].

Based on the simple idea of contrastive learning, many contrastive losses and their variants
have been designed. Wang and Gupta [51] design a Siamese-triplet network with a contrastive
ranking loss function to train a CNN for image representation without semantic labels. Sohn [38]
proposes multi-class N-pair loss to address the slow convergence problem of traditional pairwise
contrastive loss and triplet loss. Hermans et al. [18] show that using a variant of the triplet loss
to perform end-to-end deep contrastive learning outperforms most other methods for the Person
Re-Identification task.

Contrastive learning has shown its success in learning visual representations, text representations,
and multi-modal representations. Chen et al. [4] learn representations by maximizing agreement
between differently augmented views of the same data example via a contrastive loss in the latent
space. Wang et al. [50] explore supervised contrastive learning strategies to learn better visual
representations to boost long-tailed image classification performance. Li et al. [26] propose a novel
contrastive learning-based zero-shot text classification framework to capture the semantic relations
between classes and build more discriminative embeddings. Yu et al. [62] apply a captioning loss
and a contrastive loss between uni-modal image and text embeddings to pre-train an image–text
encoder–decoder foundation model.
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3 Task Definition
In this section, we introduce the notations and provide a formal definition of the ZS-CMR task.
Without loss of generality, we consider two modalities, i.e., image and text, as an example to
illustrate the task. Let DB = {(V8 ,T8 ,~8 )}#B

8=1 denote the seen dataset with #B image–text pairs
(i.e., image and its corresponding text description), where V8 , T8 , and ~8 refer to image, text, and
class label of the ith image–text pair, respectively. Similarly, the unseen dataset is denoted as
DD = {(V9 ,T9 ,~ 9 )}#D

9=1. For ZS-CMR, we assume that the class label sets of the seen dataset and
unseen dataset are disjoint. Thus, we denoteYB = {~8 }#B

8=1 andYD = {~ 9 }#D
9=1 as the class labels sets of

DB and DD , respectively, and ensure YB44= \YD=B44= = ;. The objective of ZS-CMR is to construct
a CMR model using the seen dataset DB and subsequently apply this model for CMR on the unseen
dataset DD .

4 Proposed Method
In this section, we first provide an overview of our proposed FGAN. Subsequently, we introduce
the main components of FGAN. Lastly, we describe how to train FGAN and perform retrieval based
on FGAN.

4.1 Overview
The basic idea of FGAN is to learn a common representation space for samples from different
modalities, while at the same time, align the salient fine-grained semantic information among
samples. The advantage of aligning more fine-grained information beyond the class label is that
it can alleviate the domain-shift problem of transferring the retrieval model from seen classes
to unseen classes, so as to achieve better generalization. We consider performing fine-grained
alignment from two aspects. First, regarding sample features, we can align features at a finer
granularity than the class level to capture the discrepancies among samples within the same class,
ensuring that information beyond class labels is effectively aligned. Second, in terms of sample
labels, we assume that each sample may carry more diverse information than merely the class
label. We can align the label distribution of samples with different modalities in a large label space
(e.g., ImageNet labels) to reflect the information carried by each sample.

Specifically, as shown in Figure 2, we employ an FGE, comprising a text encoder and an image
encoder, to encode input text or images into two types of representations: region embedding and
label distribution. For the training of region embedding, we propose an FGCL strategy. In this
strategy, samples of different modalities can be categorized into three types of relations: positive,
semi-positive, and negative. By properly adjusting the margins among these three types of relations
in the space, the distance among samples in the space can reflect the correlation of samples at a
finer granularity than the class level. For the training of label distribution, we propose an FGLA
strategy. In this strategy, each image and its corresponding text description are considered to carry
the same semantic information. By aligning the label distribution of text and image in such a pair
with the pseudo label distribution of the image obtained from the pre-trained model, the final
FGAN will know how to effectively estimate the label distribution of input text and image. After
FGAN is well trained, region embedding and label distribution can be used for retrieval on unseen
classes.

4.2 FGE
Different from previous methods that simply use the off-the-shelf features extracted from the
VGG-19 model and the Doc2Vec model pre-trained on Wikipedia corpus, we process the data in an
end-to-end manner. As shown in Figure 3, we first use two base encoders ⇢E10B4 and ⇢C10B4 to encode
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Fig. 2. Overview of the proposed FGAN. The architecture consists of three main components: the FGE,
FGCL, and FGLA. The FGE extracts two types of representations: region embeddings from images and label
distributions from text. In FGCL, the model utilizes a selective triplet loss to ensure that positive samples are
closely aligned while semi-positive and negative samples are appropriately distanced, capturing fine-grained
semantic relationships. The FGLA aligns the label distributions of samples with a pseudo ImageNet label
distribution obtained from a pre-trained model, preserving the semantic diversity of the data. Together, these
components enable FGAN to effectively perform ZS-CMR by leveraging fine-grained semantic information.

the raw images and texts, respectively. Then, we generate region embedding and label distributions
based on the region embedding encoders ⇢EA4 and ⇢C;3 and label distribution encoders ⇢E;3 and ⇢C;3 ,
respectively.

4.2.1 Base Encoder. As shown in Figure 3, to make FGE more generalizable and compatible
with different types of network structures, we design two encoding schemes for the base encoder:
Transformer-based (e.g., ViT [12] and BERT [11], left part in Figure 3), and non-Transformer-based
(e.g., VGG [37] and Doc2Vec [23], right part in Figure 3).

For the non-Transformer-based base encoder, we use VGG to encode image and Doc2Vec to
encode text, similar to previous methods. To be consistent with the Transformer-based encoder, we
set a flatten operation after VGG and Doc2Vec to generate a sequence of vectors as representation
for the input image or text. Specifically, given an input image V 2 R2⇥⌘⇥F , we first send it into the
VGG model and obtain a feature map F 2 R3

0
E⇥⌘0⇥F0 from a specified intermediate layer of the VGG

model. Then, we flatten the feature map F into ⌘0 ⇥F 0 contextualized vectors v08 2 R3
0
E , so that each

image can be represented as a sequence of contextual representation V0:

V0 = {v01, v02, . . . , v08 , . . . , v0⌘0⇥F0 }, v8 2 R3
0
E , (1)

where3 0E ,⌘0, andF 0 are the number of channels, height, and width of the feature map F, respectively.
Similarly, given an input text T with n words, apart from the whole text’s feature vector t 00 directly
extracted from the Doc2Vec model, we also extract a feature vector t 08 for each word in the text
where the feature vector is the word embedding learned in the Doc2Vec model. Then, each text can
be represented as a sequence of feature vectors T 0:

T 0 = {t 00, t 01, . . . , t 08 , . . . , t 0=}, t 08 2 R3
0
C . (2)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 10, Article 275. Publication date: October 2025.



275:8 S. Ge et al.

Fig. 3. Illustration of our FGE. To accommodate different basic encoders, we design two encoding schemes.
For the Transformer-based model (left), we first flatten the raw image into sequential image patches before
inputting them into the model. In contrast, for the non-Transformer-based model (right), we first extract the
feature map and then flatten it into sequential features.

For the Transformer-based base encoder, we use ViT to encode image and BERT to encode text.
Both of them can generate a sequence of vectors as representation for the input image or text. In
all, both kinds of base encoder can generate a sequence of representation for their input image
or text. These sequences of representations (i.e., V0, and T 0) can then be used for the following
transformations, which ultimately lead to our desired region embedding and label distribution.

4.2.2 Region Embedding. To extract more fine-grained information, we aim to identify the most
informative regions in the input image (text) and then combine the representation of these regions
to form the final representation of the input image (text), referred to as region embedding. To
achieve this goal, we can first evaluate a saliency score for each region to reflect the importance of
the fine-grained information contained in each region. Then, we can aggregate the top-K regions
with high saliency scores to form the final region embedding. Given the sequence of contextual
vectors generated by the base encoder, we can assume that each vector in the sequence corresponds
to a region (e.g., an image patch) in the input image (text). As shown in the top-right part of
Figure 3(a), the region embedding encoders (i.e., ⇢CA4 for image and ⇢EA4 for text) contain two
components: region saliency evaluation and top-K region selection.
Region Saliency Evaluation. For the evaluation of region saliency, we use a saliency evaluation

network q to predict a saliency score for each region of the image or text, respectively. Specifically,
we construct the saliency evaluation network with a Multi-Head Self-Attention (MSA) [44]
module and a linear layer with a sigmoid function. Given the sequence of contextual representation
such as V , T , V0, or T 0, which can be uniformly denoted as X = {r1, r2, . . . , r#A }, the MSA is
computed as follows:

MSA(X) = Concat(head1, . . . , head<)W$ , head8 = SA8 (X), (3)
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SA8 (X) = Softmax

 
(XW&

8 ) (XW 
8 )>p

3/<

!
(XW*

8 ), (4)

where W&
8 ,W

 
8 ,W

*
8 2 R3⇥

3
< and W$ 2 R3⇥3 are the transformation matrices, #A is the number

of regions in the sequential representation, d is the dimension of each region, and m is the number
of the self-attention heads. Then, we can obtain the saliency scores & of all regions by mapping the
output of the MSA to scalars using a linear layer with the sigmoid function:

& = Sigmoid(MSA(X)W% ), (5)

where & 2 R#A and W% 2 R3⇥1. The use of MSA ensures that the encoder can capture contextual
dependencies between different parts of the input. By formally defining the attention mechanism
as a weighted sum of input features, the encoder emphasizes regions with higher saliency scores,
thereby optimizing the representation for ZS-CMR.

Top-K Regions Selection. For the selection of top-K regions, given the saliency scores calculated
by the saliency evaluation network, we select the K regions with top-K highest scores and then
concatenate the contextual representations of these selected regions as the region embedding. To
train the whole model using back-propagation, we need to make the top-K selection operation
differentiable. We employ the perturbed maximum method [2, 9] for this purpose. Specifically, the
differentiable top-K selection operation is equivalent to the following linear program:

max
Y2C

hY, &1>i

where C =
8>><
>>:
Y 2 R#A ⇥ : Y=,: � 0, 1>Y = 1,Y1  1,

’
82 [# ]

8Y8,: <
’
92 [# ]

9Yj,k0 ,8: < : 0
9>>=
>>;

(6)

where Y are the indicator vectors to be optimized, &1> 2 R#⇥ are the scores that are replicated K
times, and C is the convex polytope constraint set. Then, the forward operations can be defined as
follows:

Yf = EZ


argmax

Y2C
hY, &1> + fZi

�
, (7)

and the Jacobian for the backward computation during training is defined as follows:

�&Y = EZ


argmax

Y2C
hY, &1> + fZiZ>/f

�
, (8)

where f is a hyper-parameter, Z is the noise sampled from the normal distribution. By using the
differentiable top-K operation, the model can be optimized using back propagation algorithm during
training. The differentiable top-K selection is proved to maintain differentiability and allow for
gradient-based optimization, ensuring that the most informative regions are consistently selected
during training.
Region Embedding Generation. Finally, the selected regions are concatenated and mapped into

the cross-modal embedding space as follows:

x = Concat({r1, r2, . . . , rB8 })WA , (9)

where B8 is the region index of the ith selected image (text) region andWA 2 R(3⇤ )⇥3G is a learnable
mapping matrix.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 10, Article 275. Publication date: October 2025.



275:10 S. Ge et al.

4.2.3 Label Distribution. To reflect the diverse semantic information carried by the input image
(text), we expect to estimate its label distribution in a large label space based on the sequence of
contextual representation from base encoder. To achieve this goal, we can first pool the sequence
of contextual representation into a unit-length representation which is then embedded into a large
label space of ImageNet labels, so that the semantic similarity of two samples (i.e., an image and a
text) can be well reflected by the similarity of their label distributions in the label space. As shown
in the top-left part of Figure 3(a), the label distribution encoders (i.e., ⇢E;3 for image and ⇢C;3 for text)
contain two components: global average pooling and label distribution generation.
Global Average Pooling. We first employ a global average pooling layer to pool the sequence of

contextual representations X = {r1, r2, . . . , r#A } into a unit-length representation r̂ :

r̂ = GAP({r1, r2, . . . , r#A }) =
1
#A

#A’
8=1

r8 , (10)

where GAP denotes the global average pooling layer, r8 represents the contextual representation
of the ith region of the input image or text, and #A is the total number of regions.

Label Distribution Generation. Then, we incorporate a VAE [22]�v = {�E⇢,�E⇡ } (or�t = {�C⇢,�C⇡ }
for text) along with a linear layer Z to compress the pooled representation r̂ E (or r̂C ) into a label
distribution gv (or gt ), while preserving the salient semantic information:

gE = Z E (�E⇢ (r̂ E)), gC = Z C (�C⇢ (r̂C )), (11)

where �E⇢ , �C⇢ are the encoders of the VAEs. The FGE is designed to capture detailed semantic
information by extracting region embeddings and label distributions from input images and texts.
The encoder utilizes attention mechanisms and differentiable top-K selection to focus on the most
informative regions, thus preserving fine-grained details that are crucial for distinguishing between
similar samples.

4.3 FGCL
To effectively capture the intra-class discrepancy, we propose the FGCL strategy to fine-tune the
region embeddings, thereby optimizing the cross-modal embedding space. A meaningful embedding
space for retrieval is one in which relevant embeddings are close to each other while irrelevant
embeddings are separated, rather than simply putting the same-class embedding into a cluster.
Therefore, we design a special cross-modal selective triplet loss to adjust the embedding space of
region embedding at a finer granularity than the class level.

Specifically, given a batch of M golden pairs of image and text {(xE8 , xC8 ),~8 }"8=1 (i.e., an image and
its corresponding text description), we can construct a total of "2 image–text pairs {(xE8 , xC9 ) |8 2
[1,"], 9 2 [1,"]}. These image–text pairs can be divided into three types of relations (i.e., positive,
semi-positive, and negative) based on whether the image and text in the pair are from the same
golden pairs and whether they belong to the same class:

(1) Positive Relation: 8 = 9 ;
(2) Semi-Positive Relation: 8 < 9 , but ~8 = ~ 9 ;
(3) Negative Relation: 8 < 9 , ~8 < ~ 9 .
Based on these relations given above, for an anchor image embedding xE8 , we can define three sets

of text embeddings S% (xE8 ), S( (xE8 ), and S# (xE8 ) that hold Positive Relation, Semi-Positive Relation,
and Negative Relation with the anchor image, respectively.Then, we define two kinds of cross-modal
triplets for contrastive learning. Taking an image embedding xE8 as an example anchor, these two
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kinds of cross-modal triplets can be defined as follows:
hxE8 ; xC? 2 S% (xE8 ); xCB 2 S( (xE8 )i, (12)

hxE8 ; xC? 2 S% (xE8 ); xC= 2 S# (xE8 )i. (13)
Based on the above triplets, we formulate our proposed FGCL as a two-fold loss function. First,

we aim to ensure that the distance between xE8 (anchor ) and xC? (positive) is smaller than the distance
between xE8 and the closest xC= (negative) by a specific margin:

dist(xE8 , xC? ) +<1 < min
xC
=2S# (xE

8 )
dist(xE8 , xC=), (14)

where<1 is a margin that is enforced between positive and negative pairs. Then, the Anchor-
Positive-Negative (A-P-N ) loss function can be defined as follows:

L�%# =
1
"

"’
8=1

max(<1 + dist(xE8 , xC? ) � min
xC
=2S# (xE

8 )
dist(xE8 , xC=), 0). (15)

Second, as shown in Figure 1, to model the intra-class discrepancy, we aim to ensure that the
distance between xE8 and xC? is smaller than the distance between xE8 and the farthest xCB (semi-
positive) by another specific margin<2:

dist(xE8 , xC? ) +<2 < max
xC
B 2S( (xE

8 )
dist(xE8 , xCB ) . (16)

In this way, the semantically dissimilar image and text in Semi-Positive pairs can be pushed away
from each other. Then, the Anchor-Positive-Semipositive (A-P-S) loss function is defined as
follows:

L�%( =
1
"

"’
8=1

max(<2 + dist(xE8 , xC? ) � max
xC
B 2S( (xE

8 )
dist(xE8 , xCB ), 0). (17)

Finally, the total loss of FGCL can be calculated as follows:
L�⌧⇠! = L�%# + UL�%( , (18)

where U is the hyper-parameter that controls the weight ofL�%( in the total loss.This FGCL strategy
allows for a more nuanced optimization of the cross-modal embedding space, leading to improved
performance. FGCL refines the embedding space by explicitly modeling the relationships between
positive, semi-positive, and negative samples. This approach allows the model to capture intra-class
variability and ensures that the learned embeddings are both discriminative and semantically
meaningful. This loss L�⌧⇠! ensures that the embedding space is optimized such that positive
samples are closer to each other than negative or semi-positive samples, with the margins<1 and
<2 controlling the separation.

4.4 FGLA
To effectively capture the diverse semantic information carried by samples, we propose the FGLA
strategy that utilizes VAEs and a pre-trained image classification model to optimize the fine-grained
label distribution. The VAE framework, with its encoder–decoder architecture, allows for the
reconstruction of input features while also regularizing the latent space to approximate a prior
distribution. Therefore, we employ VAE to generate compact and informative label distributions for
images and texts. VAEs are particularly suited for this task because they can learn a probabilistic
latent space that captures the underlying semantic structure of the data. This regularization is
crucial for generating meaningful label distributions that align with the pseudo labels. While two
image–text pairs may belong to the same class, the objects they carry can be very different. Previous

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 10, Article 275. Publication date: October 2025.



275:12 S. Ge et al.

methods often simply align the representation of image and text to the label embedding of their
belonging class, neglecting the diverse and fine-grained semantic information in image and text. To
address this, we propose to align the label distribution of an image or text to a meaningful pseudo
ImageNet label distribution generated by the pre-trained model, maintaining the semantic diversity
of samples.

4.4.1 Pseudo Label Generation. First, we use a pre-trained ImageNet [10] classification model I
to generate a pseudo soft label g for each image:

g = I(V), g 2 R1000 . (19)

The pseudo label is a 1000D probability distribution reflecting the likelihood of the image containing
objects from the 1,000 different ImageNet classes. This label serves as a reference for aligning the
label distributions of image and text, reflecting the semantic diversity of real-world scenes. Although
objects in the retrieval images may not appear in the pre-defined 1,000 ImageNet classes, most
objects in real-world scenes are semantically related to one or more ImageNet classes (i.e., having
similar appearance or co-occurrence). Therefore, the pseudo label g provides useful semantic
information for matching image and text on unseen classes.

4.4.2 Label Distribution Calculation. Given the pooled image feature r̂ E8 of the image V and
pooled text feature r̂C of the text T, we utilize VAEs to calculate the label distributions gE and gC

(as described in Section 4.2.3). These label distributions, generated by the VAEs, provide a compact
and comprehensive representation of the images and texts:

gE = Z E (�E⇢ (r̂ E)), gC = Z C (�C⇢ (r̂C )), (20)

where Z E and Z C are two linear layers that map the latent embeddings to the 1000D label embeddings.

4.4.3 FGLA Loss. The FGLA loss is defined as the sum of the VAE loss and the alignment loss.
VAE Loss. We first calculate the VAE loss, which is the sum of the reconstruction loss and the

Kullback–Leibler (KL) divergence loss for both image and text features. The VAE loss encourages
the VAEs to learn a compact and informative latent representation of the input features while
maintaining the overall structure of the data. The VAE loss is defined as follows:

L+�⇢ = LE
A42>= + LC

A42>= + LE
 ! + LC

 !, (21)

where LE
A42>= and LC

A42>= are the reconstruction losses for image and text features, respectively,
defined as follows:

LE
A42>= =

���⇡E (gE) � r̂ E8
��
2 , LC

A42>= =
���⇡C (gC ) � r̂C8

��
2 , (22)

and LE
 ! and LC

 ! are the KL divergence losses for image and text features, respectively, defined as
follows:

LE
 ! = DKL (@E (z |r̂ E)k? (z)), LC

 ! = DKL (@C (z |r̂C )k? (z)), (23)

where DKL is the KL divergence, @E (z |r̂ E8 ) and @C (z |r̂C8 ) are the approximate posterior distributions
of the latent variables z for image and text features, respectively, and ? (z) is the prior distribution
of the latent variables.

Alignment Loss. We then align the label distribution of image V and text T8 in the same golden pair
(i.e., image and its corresponding text description) to the image’s pseudo soft label by minimizing
the following alignment loss:

L0;86= = LE
0;86= + LC

0;86=, (24)
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where LE
0;86= and LC

0;86= represent the alignment loss for the image and text, respectively. These
losses are defined as follows:

LE
0;86= =

1
2

�
KL(g kgE) + KL(gE kgC )

�
, LC

0;86= =
1
2

�
KL(g kgC ) + KL(gC kgE)

�
. (25)

The point-wise KL divergence loss is defined as follows:

KL(g8 kg8 ) = g8 log
g8
g8

. (26)

Finally, the total loss of FGLA can be calculated as follows:

L�⌧!� = L+�⇢ + L0;86= . (27)

This loss function guides the VAEs to generate meaningful label distributions that align with the
pseudo ImageNet label distribution. This loss ensures that the label distributions of images and
texts are aligned with the pseudo label distribution, preserving semantic diversity and improving
generalization to unseen classes.

4.5 Model Training
In summary, we can jointly train the FGEs corresponding to image and text by simultaneously
minimizing the loss functions of two fine-grained alignment strategies FGCL and FGLA. The full
objective function of our FGAN model is:

L = L�⌧⇠! + `L�⌧!�, (28)

where ` is the hyper-parameter set to balance the optimization of L�⌧⇠! and L�⌧!�. Given a batch
of training data, our model first generates the region embeddings and label distributions using FGE.
Then, the loss of FGCL and FGLA is calculated. Finally, we sum the losses together and optimize
the model with the back-propagation algorithm.

4.6 Joint Retrieval
At the retrieval stage, the similarity between an image and a text can be measured by jointly using
their region embeddings and label distributions. Specifically, given an unseen query text T8 and
an unseen image set {V9 }#9=1, the FGE can output their region embeddings xC8 , {xE9 }#9=1 and label
distributions gC8 , {gE9 }#9=1, respectively. Then, for each image V9 , the final similarity between T8 and
V9 is:

Sim(T8 ,V9 ) = SimRE (T8 ,V9 ) + SimLD (T8 ,V9 ), (29)

where SimRE and SimLD are the similarity functions measured on region embedding and label
distribution, respectively:

SimRE (T8 ,V9 ) =
xC8 · xE9>

kxC8 kkxE9 k
, (30)

SimLD (T8 ,V9 ) = tanh(�(KL(gC8 kgE9 ) + KL(gE9 kgC8 ))), (31)

where tanh is the hyperbolic tangent function that maps the results to (�1, 1). Finally, we can
perform joint retrieval according to the final similarity between the query text and the support
images; the images sorted in descending order according to similarities will be returned as retrieval
results.
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5 Experiments
In this section, we first introduce the datasets, the evaluation metric used in the experiments and the
implementation details of our method. Then, to validate the effectiveness of our proposed method,
we make extensive comparisons with existing methods. Finally, we conduct ablation studies and
display some visualization results to thoroughly investigate the effectiveness of each component in
our model.

5.1 Experimental Setup
5.1.1 Datasets. To verify the effectiveness of our method, we evaluate our model on four widely

used CMR datasets: Pascal Sentence [15], Wikipedia [34], PKU-XMediaNet [32], and NUS-WIDE
[8], and two sketch-based image retrieval datasets: Sketchy [28] and TU-Berlin [13]. We briefly
introduce the general information of these datasets as follows:

—Pascal Sentence dataset contains 1,000 image/text pairs organized into 20 categories which
are selected from 2008 PASCAL development kit. Each image is described with five textual
sentences.The dataset is randomly split into two parts: 800 image/text pairs selected as training
set and 200 image/text pairs as the testing set.

—Wikipedia dataset contains 2,866 image/text pairs crawled from the Wikipedia web site with
10 high-level semantic categories (e.g., art, biology, sport). Of them, 2,173 image/text pairs are
selected as training set and 693 image/text pairs are selected as testing set.

—PKU-XMediaNet dataset is a large-scale dataset which contains 40,000 image/text pairs with
200 categories. The categories are selected from WordNet to ensure the semantic hierarchy
structure. The dataset is randomly split into two parts: 32,000 image/text pairs for training
and 8,000 image/text pairs for testing.

—NUS-WIDE dataset contains about 270,000 images categorized into 81 tags. Only images from
the 10 largest categories were selected, resulting in around 70,000 image/text pairs, each with
a unique category label.

—Sketchy dataset is composed of 75,471 sketches and 73,002 images from 125 classes.
—TU-Berlin dataset consists of 20,000 sketches and 204,489 images, which shows a severe
imbalance between the numbers of sketches and images.

Following the dataset setting in the previous works [6, 27, 55], for each dataset, the training set
and testing set in the original split setting are further divided into two sets: seen category set and
unseen category set, respectively, and each set includes 50% categories. The unseen category set
in the testing set is used as the query set and the unseen category set in the training set is used
as the support set to perform the zero-shot retrieval task. Two zero-shot retrieval scenarios are
considered: Image-to-Text (I2T) and Text-to-Image (T2I). While I2T takes images as queries to
retrieve texts, T2I takes texts as queries to retrieve images. Finally, we report the performance on
I2T and T2T, and their averaged performance for overall evaluation.

5.1.2 Evaluation Metric. Following previous work, we use theMean Average Precision (MAP)
as the evaluation metric, which is calculated as the mean of the Average Precision (AP) for each
query. Take T2I retrieval as an example, given a query text T8 , the AP is calculated as follows:

�% =
1
#

 ’
:=1

P(:) ⇥ RL(:), (32)

where N is the number of query text’s relevant images (i.e., images in the same classes as the
query text) in the support set, K is the size of the support set, P(:) is the precision at cut-off k
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Table 1. Comparison of Our Model with the Baseline and Existing CMR and ZS-CMR Methods

Method Image Encoder Text Encoder Pascal Sentence Wikipedia PKU-XMediaNet

I2T T2I Avg I2T T2I Avg I2T T2I Avg

DCCA [58] TF-IDF LDA 0.207 0.183 0.195 0.238 0.237 0.236 0.031 0.044 0.038
DeepSM [52] SIFT LDA 0.276 0.251 0.264 0.265 0.258 0.262 0.040 0.096 0.068
ACMR [45] VGG BoW 0.306 0.291 0.299 0.276 0.262 0.269 0.036 0.043 0.040
MASLN [56] VGG BoW 0.307 0.294 0.301 0.284 0.264 0.274 0.040 0.045 0.043
DSCMR [65] VGG Doc2Vec 0.327 0.319 0.323 0.312 0.280 0.296 0.096 0.051 0.074

DANZCR [6] VGG Doc2Vec 0.334 0.338 0.336 0.297 0.287 0.292 0.106 0.117 0.112
DADN [7] VGG Doc2Vec 0.359 0.353 0.356 0.305 0.291 0.298 0.112 0.130 0.121
TANSS [55] VGG Doc2Vec 0.351 0.365 0.358 0.313 0.289 0.301 0.108 0.120 0.114
LCALE [27] VGG Doc2Vec 0.414 0.394 0.404 0.367 0.357 0.362 0.135 0.154 0.150
CFSA [54] VGG Doc2Vec 0.378 0.368 0.373 0.341 0.311 0.326 0.121 0.152 0.137
AAEGAN [57] VGG Doc2Vec 0.437 0.412 0.425 0.395 0.346 0.370 0.126 0.154 0.140
ILSA [48] VGG Doc2Vec 0.440 0.418 0.429 0.397 0.364 0.381 0.135 0.165 0.150
MDVAE [40] VGG Doc2Vec 0.440 0.418 0.429 0.404 0.362 0.383 0.135 0.167 0.151

FGAN'⇢ VGG Doc2Vec 0.459 0.425 0.442 0.392 0.362 0.377 0.141 0.132 0.137
FGAN!⇡ VGG Doc2Vec 0.430 0.400 0.415 0.390 0.355 0.372 0.138 0.123 0.131
FGAN� ' VGG Doc2Vec 0.493 0.457 0.475 0.411 0.383 0.397 0.161 0.147 0.154

The best results are marked in bold. FGAN'⇢ represents the retrieval results using only the region embeddings. FGAN!⇡

represents the retrieval results using only the label distributions. FGAN� ' represents the retrieval results using our
proposed joint retrieval method.

in the list, and RL(:) is an indicator function equaling 1 if the item at rank k is a relevant image,
0 otherwise [42].

5.1.3 Implementation Details. Our models are implemented using the Pytorch [31] and
Huggingface [53] libraries. The model is optimized using the AdamW Optimizer [30] with a
learning rate of 1e-4. Additionally, the cosine annealing scheduler is adopted to adjust the learning
rates and the warm-up strategy is performed at the first 10 iterations. We fine-tune the model with a
batch size of 16 on small-scale datasets as follows: 40 epochs on Wikipedia and Pascal Sentence, and
20 epochs each on PKU-XMediaNet, NUS-WIDE, Sketchy, and TU-Berlin. The training process for
FGAN takes approximately 16.3 minutes forWikipedia, 4.7 minutes for Pascal Sentence, 38.3 minutes
for PKU-XMediaNet, 32.1 minutes for NUS-WIDE, 81.3 minutes for Sketchy, and 24.7 minutes for
TU-Berlin datasets. We set hyper-parameters f = 0.05, U = 0.1, and ` = 1 for experiments on all
dataset. The setting for f = 0.05 is consistent with the same setting in [2], while U = 0.1 balances
the different parts of L�⌧⇠! and L to maintain the same order of magnitude. For the<1 and<2
and the number of regions in L�⌧⇠! , we investigate their influence on the model performance
in Section 5.3.3. Following the setting in [27], all the experiments are conducted 10 times under
the same configurations to make a fair comparison. The experiments are conducted on a machine
equipped with an NVIDIA Tesla V100 GPU featuring 32 GB of VRAM, utilizing mixed precision
training with FP16.

5.2 Comparison with Existing Methods
To ensure a fair comparison with previous methods, we employ VGG and Doc2Vec as our base
encoders. Additionally, for our FGAN, we consider three retrieval approaches: using only the
region embeddings (i.e., FGAN'⇢ ), using only the label distributions (i.e., FGAN!⇡ ), and using both
(i.e., FGAN� '). Table 1 presents the following observations:
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Table 2. Retrieval Results of the Image and Text Encoders of the FGAN Model Replaced with More
Advanced Encoders ViT, BERT, and CLIP on the Pascal Sentence Dataset

Image Encoder Text Encoder Region Embedding Label Distribution Joint Retrieval
I2T T2I Avg I2T T2I Avg I2T T2I Avg

VGG Doc2Vec 0.459 0.425 0.442 0.430 0.400 0.415 0.493 0.457 0.475
ViT Doc2Vec 0.530 0.500 0.515 0.407 0.425 0.416 0.533 0.521 0.527
VGG BERT 0.492 0.454 0.473 0.418 0.403 0.411 0.511 0.487 0.499
ViT BERT 0.553 0.547 0.550 0.429 0.469 0.449 0.592 0.568 0.580
CLIPvisual

ViT-B/16 CLIPtext
ViT-B/16 0.601 0.589 0.595 0.451 0.488 0.470 0.639 0.682 0.660

Bold values indicate the best performance for each metric across the different encoder combinations.

(1) The MAP scores of the ZS-CMR methods are significantly higher than those of the traditional
CMR methods, indicating that traditional CMR methods are not suitable for the ZS-CMR
task due to the domain-shift problem between seen and unseen data.

(2) Retrieval using either the region embeddings or label distributions of our model separately
(i.e., FGAN'⇢ and FGAN!⇡ in Table 1) achieves comparable performance with previous
methods, validating the effectiveness of our proposed FGE, FGCL, and FGLA.

(3) Our method with joint retrieval (i.e., FGAN� ' in Table 1) attains the best MAP scores and
outperforms all baselines on all three datasets. Specifically, on the Pascal Sentence dataset, our
method surpasses the previous state-of-the-art MDVAE [40] by 12.0% and 9.3% on the I2T and
T2I tasks, respectively. On the Wikipedia dataset, our method outperforms MDVAE by 1.7%
and 5.8% on the I2T and T2I tasks, respectively. On the large-scale PKU-XMediaNet dataset,
our method still outperforms MDVAE on average performance. These results demonstrate
that both region embeddings and label distributions learned by our method are effective
for retrieval, and joint retrieval with region embeddings and label distributions is more
discriminative and generalizable for retrieval across seen and unseen classes.

We further investigate whether our method is compatible with more advanced Transformer-based
encoders such as ViT and BERT. To accomplish this, we replace the VGG and Doc2Vec encoders
with ViT and BERT encoders in our model, respectively. The results are shown in Table 2. We
observe that by replacing the encoders with more advanced CLIP [33] visual and text encoders, our
method’s performance can be further enhanced. By utilizing these advanced encoders, our method
can better capture the semantic meaning of the input data, leading to improved performance. To
demonstrate the novelty and effectiveness of our proposed approach, we further compare our
method with recent ZS-CMR and Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR)methods.
For our experiments on the ZS-SBIR task, we modified our method by replacing the text encoder
with an image encoder to process sketch images. As shown in Table 3, our experimental findings
indicate that our approach achieves state-of-the-art performance when compared to the latest
methods in the field. Specifically, we surpass several recent models in key metrics such as mAP and
precision, further demonstrating the effectiveness and novelty of our proposed approach.

5.3 Model Analysis
We further analyze the effectiveness of each component in our proposed FGAN by removing or
replacing one or more of them. Table 4 presents the averaged results of I2T and T2I tasks on three
datasets, where three retrieval schemes are tested: retrieval using only region embeddings, retrieval
using only label distributions, and joint retrieval (i.e., using both region embeddings and label
distributions together).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 10, Article 275. Publication date: October 2025.



Fine-Grained Alignment Network for Zero-Shot Cross-Modal Retrieval 275:17

Table 3. Comparison of Our Model with Recent ZS-CMR on the NUS-WIDE Dataset and ZS-SBIR
Methods on the Sketchy and TU-Berlin Datasets

Model Sketchy TU-Berlin NUS-WIDE

mAP@all Prec@100 mAP@all Prec@100 mAP (I2T) mAP (T2I) mAP (Avg)

MDVAE (Tian et al. [40]) 0.613 0.723 0.486 0.612 0.604 0.595 0.599
ILSA (Wang et al. [48]) 0.667 0.754 0.483 0.593 0.609 0.599 0.604
SMF (Ho et al. [20]) 0.642 0.770 0.507 0.620 - -
OAN (Zhang et al. [63]) 0.617 0.737 0.505 625 - -
URHNL (Yong et al. [60]) - - - - 0.642 0.644 0.643
CMAAM (Su et al. [39]) 0.730 0.809 0.560 0.665 - - -
Ours 0.737 0.797 0.573 0.675 0.661 0.655 0.658

ZS-SBIR, Zero-Shot Sketch-Based Image Retrieval. Bold values indicate the best performance for each metric
across the compared models.

Table 4. Model Analysis of FGAN

Model Setting Pascal Sentence Wikipedia PKU-XMediaNet

RE LD JR RE LD JR RE LD JR

Full Model 0.442 0.415 0.475 0.377 0.372 0.397 0.137 0.131 0.154

— Loss of FGLA 0.437 0.115 0.436 0.364 0.233 0.364 0.133 0.011 0.133
— Loss of FGCL 0.125 391 0.397 0.264 0.325 0.318 0.014 0.132 0.123

— ⇢EA4 and ⇢EA4 (using global average pooling) 0.429 0.397 0.448 0.356 0.361 0.374 0.125 0.129 0.137
— q (using random selection) 0.336 0.402 0.419 0.319 0.361 0.366 0.053 0.125 0.125
— �E and �C (using linear layer) 0.437 0.393 0.457 0.375 0.361 0.385 0.135 0.117 0.147

— A-P-S loss (using only A-P-N loss) 0.437 0.401 0.463 0.364 0.370 0.388 0.133 0.131 0.152
— Selective triplets (using all triplets) 0.371 0.400 0.409 0.328 0.359 0.357 0.033 0.121 0.118
— Triplet loss (using pairwise loss) 0.417 0.399 0.448 0.341 0.359 0.371 0.081 0.127 0.132
— Contrastive learning (using classification loss) 0.343 0.401 0.377 0.291 0.347 0.341 0.131 0.117 0.141

— Pseudo soft label (using random label) 0.441 0.115 0.437 0.377 0.225 0.373 0.107 0.013 0.087
— Pseudo soft label (using one-hot label) 0.442 0.121 0.439 0.376 0.220 0.381 0.094 0.025 0.097
— ImageNet label (using word embedding) 0.442 0.216 0.436 0.371 0.243 0.371 0.099 0.031 0.093

The average MAP scores are reported. RE, LD, and JR represent performing retrieval using region embeddings, label
distributions, and both of them, respectively. The setting “— Region Selection (using global average pooling)” means
that the region selection strategy is ablated form the framework and global average pooling is adopted. Bold values
indicate the best performance for each metric across different settings.

5.3.1 Ablation of Loss Function. As demonstrated in the first three rows of Table 4, both our
proposed FGLA and FGCL contribute to the performance improvement of our FGAN method. For
instance, without L�⌧!�, retrieval using region embeddings still performs well on the datasets.
However, using label distributions that are not optimized by FGLA almost performs like a random
selection, and the joint retrieval results using region embeddings and label distributions slightly
degrade the performance compared to retrieval using only region embeddings. These results
indicate that the proposed FGLA and FGCL strategies can work independently, with the FGCL
strategy successfully optimizing the region embeddings and the FGLA strategy optimizing the
label distributions. Furthermore, using them simultaneously can further improve the MAP scores,
suggesting that the two strategies are effective and complementary.
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Fig. 4. The I2T and T2I retrieval results using region embeddings with different<1 and<2 and using different
numbers of regions in the FGCL on the Pascal Sentence dataset.

5.3.2 Effect of Designments in FGE. To study the effectiveness of FGE, we compare our method
with the following settings: (1) global average pooling over all regions instead of ⇢EA4 and ⇢CA4 for
the generation of region embeddings; (2) random region selection instead of according to the
saliency evaluation network q in ⇢EA4 and ⇢CA4 ; and (3) removing the AEs �E and �C in ⇢E;3 and ⇢E;3 ,
respectively, and using a linear layer to map the representation after GAP to 1000D as the label
distributions.

As shown in Table 4, the retrieval performance gets worse after replacing ⇢EA4 and ⇢CA4 with
the global average pooling operation over all regions, and the model fails to retrieve meaningful
samples after replacing the saliency evaluation network n with random selection in ⇢EA4 and ⇢CA4 on
all three datasets. The retrieval results indicate the effectiveness of ⇢EA4 and ⇢CA4 in the generation
of region embeddings and the necessity of mining the semantically meaningful regions to form
the region embeddings. Moreover, removing the AEs in ⇢E;3 and ⇢C;3 and using the representation
generated by a linear layer as the label distributions also lead to performance degradation, which
verifies the effectiveness of incorporating �E and �C in ⇢E;3 and ⇢C;3 for the generation of label
distributions.

5.3.3 Effect of Designments in FGCL. In this part, we conduct ablation studies on the proposed
FGCL strategy by comparing the FGCL strategy with four variants: (1) removing the L�%( in
L�⌧⇠! ; (2) using all triplets instead of the closest and farthest triplets; (3) replacing the triplets
contrastive loss with the pairwise contrastive loss; and (4) replacing L�⌧⇠! with the cross entropy
classification loss.

As shown in Table 4, the FGCL strategy achieves the best results among all the settings. Specif-
ically, without the L�%( in L�⌧⇠! , the retrieval performance decreases on all three datasets. Using
all triplets for L�⌧⇠! degrades retrieval performance significantly. This is mainly because the
semantic similarity between samples in different triplets is also different; simply maximizing the
margin in all A-P-S or A-P-N triplets will affect the learning of the common embedding space.
Furthermore, replacing the triplets contrastive loss with the pairwise contrastive loss leads to a
decrease on the retrieval using region embeddings, and replacing L�⌧⇠! with the cross entropy
classification loss results in the most significant performance degradation. In addition, we further
investigate the influence of different<1 and<2 in the FGCL strategy, and the ration of selected
image regions :E and text regions :C for the learning of region embeddings. To avoid the effect of
number of text regions when conducting experiments on various image regions, we replace ⇢CA4 with
global average pooling, and vice versa. The results are shown in Figure 4. It can be seen that using
<1 = 0.5,<2 = 0.5, 10% image regions, and 30% text regions could achieve the best performance.

5.3.4 Effect of Designments in FGLA. In this part, we validate the effectiveness of the FGLA
strategy. We compare our FGLA method with three settings: (1) replacing the pseudo soft label with
random data sampled from normal distribution; (2) replacing the pseudo soft label with one-hot
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Table 5. Performance with Different Image and Text Base Encoder in the FGE

Image Encoder Text Encoder Trainable Params (M) FLOPs (G) Memory (GB) Speed mAPAvg

ResNet-18 Doc2Vec 9.5 6.0 0.72 28.8 0.461
VGG-19 Doc2Vec 9.5 23.8 2.4 18.3 0.475
ViT Doc2Vec 9.2 21.5 20.7 16.9 0.527
VGG-19 BERT 10.2 25.2 2.7 16.4 0.499
ViT BERT 10.0 22.9 29.7 15.8 0.580
CLIPvisual

ViT-B/16 CLIPtext
ViT-B/16 7.7 22.1 25.6 15.9 0.660

“FLOPs” denotes the floating point operations per second during inference, “Memory” denotes the required
GPU memory of inference with the batch size set to 16. “Speed” denotes the inference samples per second.
“mAPAvg” denotes the average mAP score.

label predicted by the pre-trained ImageNet model; and (3) replacing the FGCL with pre-defined
label embedding like previous methods.

As shown in the last three rows of Table 4, the model fails to learn meaningful label distribution
with randomly generated labels, and the soft label distributions outperform one-hot label distribu-
tions on all three datasets. Compared to the pre-defined label embedding method that previous
methods commonly adopted, our FGLA strategy achieves better results. These results indicate that
the pseudo soft labels can provide useful semantic information for label distribution learning and
thus is beneficial to the ZS-CMR task.

5.3.5 Model Complexity and Scalability. In this part, we investigate the scalability and appli-
cability in real-time or resource-constrained environments of our model. The primary sources of
model parameters and computational complexity stem from the backbones used for visual and
text encoding within the FGE. To address varying resource scenarios, we can utilize different-
sized backbones, allowing for flexibility based on available computational resources. As shown in
Table 5, we conducted experiments comparing different backbones and ablation settings. The
table summarizes the model’s computational load, parameter count, required GPU memory, in-
ference speed, and performance metrics (mAPAvg) across various configurations. This demon-
strates that our model can efficiently adapt to real-time and resource-constrained environments
while maintaining competitive performance. By selecting appropriate backbones, we can opti-
mize our model for various applications, ensuring it remains practical under different operational
constraints.

5.4 Qualitative Analysis
Finally, we conduct a qualitative analysis for our proposed method. We visualize the learned
embeddings of both region embeddings and label distributions and the weights produced by the
saliency evaluation network.

5.4.1 Visualizing Learned Embeddings with t-SNE. Figure 5 presents the visualization of region
embeddings and label distributions before and after training, using the t-SNE tool [43]. From the
figure, it is evident that the untrained image and text region embeddings, as well as label distribu-
tions, are far apart in the embedding space. In contrast, the trained image and text embeddings
from the same classes are closely situated in the learned common embedding space. Furthermore,
after training, most samples are accurately separated into different semantic clusters based on
their classes. Additionally, semantically similar classes are also positioned closely in the learned
embedding space, for example, dog and cat, and sheep and horse. This visualization result demon-
strates that our FGAN method effectively aligns data from different modalities and constructs a
meaningful semantic embedding space.
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Fig. 5. The t-SNE visualization results of the unseen region embeddings and label distributions before and
after training under a random data split. The • symbol denotes the text features and the ⇥ symbol denotes
the image features. Clusters of different color belong to different classes.

Fig. 6. The visualization results of the weights produced by the scorner net. For each sample, the left is the
image split into 196 patches and the right is the sentences describing the image. Patches or words with higher
scores are marked with deeper color.

5.4.2 Visualizing Weights from the Saliency Evaluation Network. Figure 6 displays the weights
of each region in the texts and images generated by the saliency evaluation network for four
test image–text pairs from different classes. This visualization is used to verify if our model can
effectively identify salient semantic regions. As evident in the images, the salient objects receive
higher scores, while the surrounding backgrounds have comparatively lower scores. Likewise, in
the texts, words describing objects, appearance, actions, and states tend to obtain high scores as
well. These visualizations suggest that the proposed FGE and FGCL methods can effectively capture
fine-grained meaningful regions while discarding irrelevant noise and backgrounds in both images
and texts.

5.4.3 Case Study. In this subsection, we provide an analysis of specific instances where our
model did not perform well. We selected three examples from the test sets and returned their
top five retrieval results, as shown in Figure 7. It can be observed that failures in these cases
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Fig. 7. Retrieval results for three test cases. Each case shows the top five retrieval results for a given query.
Results marked with a green rim indicate correct matches, while those with red rims indicate incorrect
matches.

stem from the inherent similarities between the concepts in the query and the retrieval results.
Additionally, this phenomenon is reflected in the t-SNE visualization (Figure 5), where samples
from similar categories are positioned close together in the embedding space. These insights suggest
that enhancing the model’s ability to differentiate between closely related categories could improve
performance in future work.

6 Conclusion
In this article, we propose an FGAN to learn representations with fine-grained alignment for ZS-
CMR. Specifically, we propose an FGE to encode the images and texts into their region embeddings
and label distributions. Then, we propose an FGCL strategy to fine-tune the region embeddings,
which can better model intra-class discrepancy and measure the similarity of samples within the
same class. Moreover, we propose an FGLA strategy to fine-tune the label distributions, which
can further capture the rich semantic information carried by single sample. Finally, both region
embeddings and label distributions are utilized together to perform ZS-CMR at a fine granularity.
Experimental results on three widely used datasets demonstrate that our method outperforms the
state-of-the-art methods by a large margin.
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