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Acoustic-based Lip Reading for Mobile Devices:
Dataset, Benchmark and A Self

Distillation-based Approach
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Abstract—Speech is a natural communication way between people and a good way for human-computer interaction. However, speech
with audible voices often faces the following problems, e.g., being affected by surrounding noises, breaking the quiet environment,
leaking privacy, etc. Therefore, silent speech was proposed, especially lip reading, which aims to recognize speech content based on
lip movements. In this paper, we utilize inaudible acoustic signals generated from mobile device to sense and recognize lip movements
for lip reading. Considering the lack of public dataset in acoustic-based lip reading, we propose and release a large-scale lip-reading
dataset LIPCMD with 30000 acoustic-based recordings. To advance the further research in lip reading, we provide benchmark
evaluation on LIPCMD, while using traditional machine learning solutions and recent deep learning approaches. To recognize weak
acoustic signals as words for lip reading, we propose a self distillation based approach LipReader, which distills the probability
distribution and attention map in convolutional neural network itself for better classification. Finally, we implement LipReader on
smartphone and evaluate it on LIPCMD dataset as well as under complex scenarios. Experimental results show that LipReader can
achieve a good recognition accuracy for lip reading, i.e., 91.58%, while outperforming baseline solutions and existing work.

Index Terms—Acoustic-based Lip Reading, Dataset, Benchmark, Self Distillation.
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1 INTRODUCTION

As a natural and convenient communication way be-
tween people, speech plays an important role in daily
communication. Recently, with the advancement of smart
devices, speech also makes a good contribution to Human-
Computer Interaction (HCI). There have emerged many
kinds of speech-driven applications or services, e.g., Siri in
iPhone, voice assistant in Google Maps, voice messages in
social softwares. When speaking to the device, the device
will accordingly provide the queried information, perform
the action, deliver the message, etc. In most of the speech-
based interactions, the user needs to speak with audible
voices, then the device recognizes the speech content based
on audios and provides the corresponding services. How-
ever, speaking with audible voices often faces the following
problems: the audible voices can be easily affected by am-
bient noises which make it difficult for speech recognition;
speaking with audible voices may not be allowed in quiet
environments (e.g., library), speaking with audible voices in
public may leak the privacy information of user.

To address the above issues caused by audible voices,
silent speech was proposed for human-computer interac-
tions. Silent speech conveys the speech content without
audible voices. Consequently, we can not recognize speech
content with audios. To address this problem, lip reading [1]
[2] [3] [4] [5], facial muscle vibration capturing [6], tougue
tracking [7], brain-computer interface [8] were proposed for
silent-speech recognition. Among the solutions, lip reading
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is one of the most well-known solutions [5], it aims to recog-
nize the speech content based on lip movements. In regard
to lip movements, they were often captured by camera and
represented with image sequence or videos. Nevertheless,
these vision-based lip reading solutions often have the fol-
lowing limitations: extracting the lip area often requires the
whole-face image which may lead to the invasion of privacy,
the image quality is easily affected by light conditions and
the solutions can hardly work with poor light conditions,
the computation overhead of image processing is heavy.
When considering the limitations in vision-based solutions,
contactless signals [1] [9] [10] [11] [12] [4] [13] can be used.
For example, WiFi signals [1], RFID signals [9], and acoustic
signals [4] [13] were introduced for lip reading. However,
WiFi-based solutions use a fixed WiFi device, RFID-based
solutions attach tags around mouth, which may limit the
application scenario of lip reading. To provide the service
of lip reading anywhere anytime, lip reading based on
acoustic signals emitted and collected by mobile devices
was proposed in recent years.

However, the amount of research work on acoustic-
based lip reading is limited. Specifically, Tan et al. [4] firstly
introduced acoustic signals for lip reading and focused on
recognizing basic mouth motions. After that, Gao et al. [5]
utilized the micro-Doppler effect of acoustic signals and
dual microphones of smartphone to recognize 45 words
for lip reading. Zhang et al. [14] introduced inaudible
acoustic signals modulated by GSM training sequence to
sense lip movements, and then extracted channel impulse
responses as features for a CNN network to classify 20 com-
mands/words. Zhang et al. [15] introduced multi-frequency
inaudible acoustic signals, and then designed a hierarchical
convolutional neural network and a multi-task encoder-
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Fig. 1. The speaker of smartphone emits acoustic signals, while the
microphone of smartphone collects the reflected signals for lip reading.

decoder network for word-level and sentence-level silent
speech recognition, respectively. Overall, the existing work
advanced the research of lip reading, but usually had the
following limitations. First, there are few public lip reading
datasets, thus making it difficult for performance compar-
ison and may hinder the deeper research of lip reading
on the basis of existing work. Second, when only using
the weak signals collected from one microphone, it is still
unknown how to efficiently perform lip reading with a large
number of words and users, where more words/classes
often mean worse/lower classification accuracy while more
users often mean more differences of acoustic signals in the
same class. Third, the existing solutions often depended on
remote servers for data processing, while difficult to work
on resource-limited mobile devices, thus may hinder the
widespread use of the solutions.

Considering the above issues, in this paper, we focus on
acoustic-based lip reading on mobile device. As shown in
Fig. 1, the mobile device (e.g., smartphone) uses the built-in
speaker to emit the acoustic signals, while using the built-in
microphone to receive the reflected acoustic signals caused
by lip movements (i.e., silent speech). The goal is to recog-
nize the reflected acoustic signal caused by lip movement as
a word on the mobile device with acceptable time latency.
To achieve the above goal, there are four challenges to be
addressed in this paper:

(1) Could we provide a public acoustic-based dataset to ad-
vance the research on lip reading? Considering the lack of
public dataset in acoustic-based lip reading, we collect and
release a large-scale lip-reading dataset LIPCMD, which is
acquired from 20 users and consisted of 30000 acoustic-
based recordings corresponding to 50 commonly used HCI
commands (i.e., 50 classes/words). Besides, to further ad-
vance the following research on lip reading, we provide
the benchmark evaluation on LIPCMD dataset, while using
the traditional machine learning based solutions and recent
deep learning based approaches.

(2) Only using one microphone to collect the weak acoustic
signals of micro lip movements, how to achieve high performance
of lip reading? Different from big motions like walking or
moving hands, lip movements of silent speech are rather
small, thus the reflected signals caused by lip movements
are weak. Besides, only using one microphone to collect the
reflected acoustic signals may further weaken the received
signals. In addition, the information of one dimensional
acoustic signal is rather limited. Therefore, it is challenging
to use the weak acoustic signals for lip reading. To address
this challenge, we first transform the acoustic signals to
signal gradient matrix, to highlight the variation of acous-
tic signals caused by lip movements. Then, we introduce

the attention map based self distillation mechanism, which
generates attention maps among convolutional neural net-
work (i.e., the backbone network of a deep learning based
approach) and distills the importance of features from latter
layers to former layers, to enhance the feature representation
of weak acoustic signals for better lip reading.

(3) When moving to a large-scale acoustic-based dataset with
a large number of words and users, how to achieve a good
performance of lip reading? In a large-scale dataset, there are
a large number of classes (i.e., types of words) and users.
However, the larger number of classes often leads to a worse
recognition/classification accuracy. Besides, more users of-
ten mean more differences in pronunciations or habits,
thus introducing more confusion in recognizing words in
the same class. Therefore, it is challenging to achieve a
good classification performance for lip reading on a large
dataset. To address this challenge, we introduce the proba-
bility distribution based self distillation mechanism, which
adds intermediate classifiers among convolutional neural
network to distill the probability distribution from latter
classifier to former classifier, to highlight the class sensitive
features of acoustic signals and improve the classification
performance. Furthermore, to tolerate the user difference
and make LipReader work in user-independent way, we also
propose a fine-tuning strategy to make the system adapt to
new users.

(4) Is it possible to achieve a light-weight and online lip-
reading solution working on resource-limited mobile devices? It is
known that the resource of mobile device is limited and the
computationally-intensive deep learning based approaches
can hardly work on mobile device. To provide a light-weight
lip-reading solution for mobile device, we design the self-
distillation modules, which are only used in training stage
while being removed in testing stage, thus can reduce the
parameters in proposed deep learning model. Besides, we
further compress the trained model and get a small-size
model which can be deployed on mobile device. To achieve
online lip reading on mobile device with acceptable latency,
we introduce the multi-thread scheme to perform Short-
Time Fourier Transform (STFT) in parallel for reducing the
recognition latency.

We make the following contributions in this paper:

• We collect and release a large-scale acoustic-based
word-level dataset LIPCMD for lip reading. Besides,
we also provide the benchmark evaluation and ex-
tensive analysis on LIPCMD dataset to advance the
following research on lip reading.

• Considering the challenges from weak acoustic sig-
nals and complexity of a large-scale dataset, we
propose a self distillation based approach LipReader
which distills the attention map and probability dis-
tribution in the convolutional neural network itself,
to enhance the feature representation and classifica-
tion performance for lip reading. Besides, we also
propose a fine-tuning strategy to make LipReader
work in user-independent way.

• We implement LipReader on Android smartphone
for online lip reading and provide a case study to
show the usability of LipReader. Besides, we conduct
extensive experiments on LIPCMD dataset as well
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as under complex scenarios to evaluate the perfor-
mance of LipReader. The experiment results show that
LipReader can achieve a high recognition accuracy
(i.e., 91.58%) on lip reading and outperforms the
benchmark solutions and existing work.

2 RELATED WORK

Lip reading aims to recognize the content of silent speech
based on lip motions. To achieve this goal, computer vision,
WiFi signals, acoustic signals etc were proposed for lip read-
ing, where most of the existing work belonged to vision-
based lip reading. In this section, we will introduce the
vision-based lip reading which is most popular, the acoustic-
based lip reading which is mostly related to this paper, and
the public datasets on lip reading.

Vision-based Lip Reading: Vision-based lip reading
uses the camera to capture images or videos of silent speech,
and then utilizes the image processing techniques to rec-
ognize silent-speech content from images/videos. Vision-
based lip reading has been studied for a long time. In the
early stage, the research work tended to extract handcrafted
features from images and then adopted classifiers for lip
reading. For example, getting Discrete Cosine Transform
(DCT) features [16], Histogram of Directional Gradients
(HOG) features [17] from pixels, or using Snake (an active
contour model) [18] to extract appearance-based features.
Then, using Support Vector Machine (SVM) or Hidden
Markov Model (HMM) to recognize the features as mean-
ingful characters. Overall, the early work mainly focused on
recognizing alphabet or simple phrase.

Recently, due to the development of deep learning, neu-
ral networks [19] [2] [3] [20] [21] [22] were proposed for lip
reading. The neural network can be used as a replacement
of classical classifier or automatic feature extractor [23].
For example, Wand et al. extracted handcrafted features
and adopted Long Short-Term Memory (LSTM) network
as a classifier for short phrase recognition [19]. However,
in many cases, neural networks were used for automatic
feature representation and adopted for lip reading in an
end-to-end way. Specifically, to recognize video clips as
words for lip reading, Chung et al. introduced Convolu-
tional Neural Network (CNN) and other variants of CNN
[2]. To recognize a video as a sentence for lip reading, CNN,
LSTM and Connectionist Temporal Classification (CTC) loss
were often adopted. For example, Assael et al. proposed a
spatiotemporal neural network consisted of CNN and Gated
Recurrent Unit (GRU) network, and then utilized CTC loss
for sentence-level lip reading for the first time [3]. After that,
attention mechanism was introduced to neural networks to
further improve lip reading performance. In recent years,
in addition to CTC loss, the encoder-decoder architecture
was proposed for lip reading. Chung et al. proposed a
neural network WLAS based on encoder-decoder architec-
ture, and introduced a novel dual attention mechanism for
sentence-level lip reading [20]. Due to the rich information
of images/videos and the powerful deep learning based
approaches, vision-based lip reading often achieves a good
performance. However, the privacy issue and large compu-
tation overhead of image processing often hinder vision-

based solutions to work on mobile devices, since their data
processing was often done on remote server [22].

Acoustic-based Lip Reading: Acoustic-based lip reading
was proposed in the last several years, and it was usually
designed for mobile or wearable devices. At first, Tan et al.
[4] proposed SilentTalk which introduced ultrasonic signals
for lip reading on the smartphone by focusing on lip mo-
tion recognition. They designed Frequency Shift Detection
Model to recognize lip motions corresponding to syllables,
and then designed Continuous Lip Reading Model to gen-
erate words or short sentences from the recognized lip mo-
tions. After that, Gao et al. [5] proposed EchoWhisper, which
introduced dual microphones of smartphone to enhance
acoustic signals through beamforming, and then utilized
the micro-Doppler effect of acoustic signals and a modified
MobileNet for lip reading, i.e., recognizing 45 words from
5 subjects. Zhang et al. [14] introduced Endophasia, which
used a mobile device to transmit and collect inaudible
acoustic signals modulated by GSM training sequence to
sense lip movements, and then extracted channel impulse
responses as features for a CNN network to classify 20
commands/words. Zhang et al. [15] proposed SoundLip by
using a smart device to send and receive multi-frequency
inaudible acoustic signals, and then designed a hierarchical
convolutional neural network for word-level silent speech
recognition while designing a multi-task encoder-decoder
network for sentence-level silent speech recognition. Until
now, the research of acoustic-based lip reading often has the
following limitations, i.e., the large-scale public lip reading
dataset was rare, the performance of lip reading under a
large number of words and users was unclear, the solutions
depended on remote servers while difficult to work on
resource-limited mobile devices.

Datasets on Lip Reading: To advance the following
research on lip reading, many datasets on lip reading were
proposed. However, most of the datasets belong to vision-
based lip reading and include word-level, phrase-level and
sentence-level datasets. LRW [2] is a typical and large-scale
word-level dataset, where each video clip is intercepted
from BBC television and corresponds to a word, it totally
includes 500 types of words and more than 1000 speakers.
MODALITY [24] is a dataset containing both words and
phrases, which are commonly-used interaction commands
(words and short phrases) in computers, and it totally has
163 types of commands. When moving to sentence-level
dataset, GRID [25] is a single-syntax fixed-length sentence-
level dataset, where each sentence consists of 6 words which
are verbs, color, prepositions, letters, numbers and adverbs
from left to right, and it totally has 51 types of words in all
sentences. TCD-TIMIT [26] is also a sentence-level dataset,
where the sentence is extracted from an audio-only speech
recognition database TIMIT [27]. TCD-TIMIT consists of
high-quality audios and videos from 62 speakers reading
a total of 6913 phonetically-rich sentences. There are rich
vision-based datasets on lip reading. However, on acoustic-
based lip reading, there is only one public dataset [15],
which includes 20 words and 70 sentences collected from 12
subjects. In this paper, we will provide a large-scale word-
level dataset which is consisted of 50 words and collected
from 20 subjects, aiming to further advance the following
research on acoustic-based lip reading.
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(a) (b)

Fig. 2. Data collection. (a) Smartphone ‘A’ is used as a controller
which sends instructions, while smartphone ‘B’ is used as a recorder
which emits acoustic signals and records reflected signals based on
instructions. (b) The screenshot of controller, which contains the hint of
word, the ‘START’ button, etc.

3 PROPOSED DATASET

In this section, we propose a large-scale acoustic-based
lip reading dataset called LIPCMD. Next, we will introduce
the data collection process and describe the dataset in detail.

3.1 Data Collection
To capture the acoustic signals corresponding to lip mo-

tions, we use the built-in speaker and bottom microphone
of smartphone to emit and receive the inaudible acoustic
signals respectively, as shown in Fig. 2a. Specifically, the
smartphone used for data collection is Samsung Galaxy S9.
The acoustic signal emitted by speaker is 20kHz, while the
sampling rate of microphone is set to 44.1kHz. As shown
in Fig. 2a, the smartphone ‘B’ is used to record acoustic
signals and is fixed on a tripod in front of the subject,
where the distance between the bottom microphone and
the subject’s mouth ranges in [2, 4]cm. In the experiment,
the subject silently speaks towards the bottom microphone
of smartphone ‘B’ and we collect the acoustic signals in
a quiet meeting room. In regard to the other smartphone
‘A’, it is used to control the data collection process and
runs a controller app shown in Fig. 2b. For the collected
acoustic signals, the recorder first removes a fixed-length
segment corresponding to the ‘beep’ at the beginning and
then records the remaining acoustic signals in a separate
WAV file, which corresponds to one word silently spoken
by one subject one time.

3.2 Details of LIPCMD Dataset
The proposed LIPCMD dataset contains 50 commonly-

used words in daily life and human-computer interactions,
e.g., ‘help’, ‘play’, ‘pause’, which are selected from the
words in MODALITY dataset [24]. In regard to MODALITY
dataset, it is consisted of 163 classes of words, including
digits, months, dates, verbs and nouns used for controlling
computer devices. For the 163 words, they can be classified

TABLE 1
Words in LIPCMD dataset

1 syllable 2 syllables 3 syllables

Word

1. add 16.run 26.alarm 41.appointment
2. back 17.save 27.begin 42.calendar
3. check 18.send 28.browser 43.camera
4. dial 19.set 29.copy 44.delete
5. end 20.sound 30.edit 45.document
6. go 21.start 31.export 46.message
7. help 22.stop 32.forward 47.picture
8. home 23.time 33.insert 48.reminder
9. last 24.up 34.music 49.volume
10.line 25.view 35.paste 50.yesterday
11.may 36.pause
12.move 37.record
13.mute 38.select
14.nine 39.thursday
15.play 40.window

Count 25 15 10

Note: Among the words, there are three pairs of easily
confused words, i.e., {send, set}, {line, nine}, {play, may}.

into four groups based on number of syllables, i.e., 64 words
with one syllable, 63 words with two syllables, 31 words
with three syllables, 5 words with four syllables. When
considering the difference between computers and smart-
phones in HCI and the ratio of words with different sylla-
bles, we select 50 words from the 163 words of MODALITY
dataset. As shown in Table 1, LIPCMD contains 50 words,
where 25 words have one syllable, 15 words have two
syllables and 10 words have three syllables. The proportion
of words with one syllable, two syllables, three syllables is
50%, 30%, 20%, respectively. Among the selected 50 words,
there are three pairs of one-syllable words having similar
pronunciations, i.e., ‘send’ and ‘set’, ‘line’ and ‘nine’, ‘play’
and ‘may’, which can be used to demonstrate the difficulty
of lip reading on words with similar pronunciations.

To collect the acoustic signals of lip motions correspond-
ing to the 50 words, we recruit 20 participants from our
university. The 20 participants include 4 females and 16
males. All the participants are more than 18 years old
and can speak English. For each participant, she/he re-
peatedly speaks each word silently 30 times, as shown in
Fig. 2. Therefore, for each type of word, we can collect
30 ⇥ 20 = 600 samples. For all the 50 types of words in
LIPCMD dataset, we can totally collect 600 ⇥ 50 = 30000
samples. In Fig. 3, we show the durations of samples corre-
sponding to each type of word. We can find that the duration
of silently-speaking a word usually lasts for 1.5 seconds to 2
seconds. For different words, there is no linear relationship
between the durations and number of syllables. For the
same word, the durations can also be different, due to the
difference in users. To provide the fairness and convenience
of performance evaluation on LIPCMD, we split the dataset
into two parts, i.e., training set and testing set. Specifically,
for the 30 samples corresponding to one type of word
collected from one participant, we randomly select 80% (i.e.,
24 samples) of them for training, while the remaining 20%
of them are used for testing. In this way, for each type of
word, there are 480 samples selected for training, while 120
samples are used for testing. On the whole dataset, there are
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Fig. 3. The duration of each type of word in LIPCMD dataset

TABLE 2
Number of samples in LIPCMD dataset

Each user All users

Training Testing Training Testing

1 syllable 600 150 12000 3000

2 syllables 360 90 7200 1800

3 syllables 240 60 4800 1200

Confused words 144 36 2880 720

All words 1200 300 24000 6000

24000 samples selected for training, while 6000 samples are
used for testing. The statistical information of training and
testing samples in LIPCMD is shown in Table 2.

4 PROPOSED BENCHMARK EVALUATION

As mentioned before, in this paper, the goal of lip read-
ing is to recognize the collected acoustic signal as a word,
i.e., word classification. Thus the typical classification meth-
ods can be adopted. Therefore, in this section, we provide
the benchmark evaluation on LIPCMD dataset through the
classical machine learning based classification methods and
recent deep learning based classification methods.

4.1 Classical Machine Learning based Methods
To realize word classification for lip reading, the clas-

sical machine learning based methods first need to extract
features from acoustic signals and then adopt suitable clas-
sifiers for classification, as described below.

4.1.1 Feature Extraction
When using acoustic signals for human activity recogni-

tion like gesture recognition [28] and daily activity recogni-
tion [29], the signals were often transformed into frequency
domain. Therefore, in the benchmark evaluation, we intro-
duce Fast Fourier Transform (FFT) [30] to transform the
acoustic signals from time domain to frequency domain,
and calculate the logarithm of FFT coefficients [31] in the
frequency range (i.e., 20kHz ± 40Hz) [4] caused by lip
motions. Then, we extract the following features in the
frequency range, i.e., mean, variance, Doppler shift, DFT

TABLE 3
Accuracy of word classification using machine learning based methods

DT RF LR kNN SVM

Freq

1 syllable 6.21% 10.62% 5.85% 8.10% 7.03%

2 syllables 6.67% 13.76% 6.24% 2.22% 8.89%

3 syllables 7.18% 12.95% 6.79% 3.08% 11.41%

Confused 4.91% 8.55% 5.77% 7.48% 7.26%

All words 6.54% 12.03% 6.15% 5.33% 8.46%

Time-Freq

1 syllable 14.31% 34.36% 23.13% 17.69% 18.62%

2 syllables 14.62% 36.50% 26.75% 9.49% 20.85%

3 syllables 15.26% 39.74% 28.46% 10.51% 23.97%

Confused 12.61% 34.83% 25.21% 11.32% 20.94%

All words 14.59% 36.08% 25.28% 13.79% 20.36%

Note: Freq: Frequency, DT: Decision Tree, RF: Random Forest, LR:
Logistic Regression, kNN: k-Nearest Neighbor, SVM: Linear Support
Vector Machine. The best performance in each row is shown in bold.

coefficients [30] and PSD coefficients [32]. Finally, the 485
features are concatenated as a one-dimensional frequency
feature vector.

In addition the above frequency-related features, the 2D
time-frequency map [33] [28] [34] [35] was also introduced
for acoustic-based human activity recognition. Therefore,
we perform a Short-Time Fourier Transform (STFT) [36]
on the acoustic signals to get the time-frequency map.
However, in time-frequency map, the strong signal in main
frequency (20kHz) may overwhelm the weak Doppler shift
of micro lip motion. Thus we introduce the signal gradient
[37], i.e., the difference of data in time-frequency map at two
consecutive time points, to extract the variation of signals
caused by lip motions. Then, we get a signal gradient matrix.
When considering the large number of features in signal
gradient matrix, we further introduce Principal Component
Analysis (PCA) to extract top 1500 main components from
the matrix as features, which are concatenated as a one-
dimensional time-frequency feature vector.

4.1.2 Word Classification
With the 1D feature vector (frequency or time-frequency

feature vector), we use the following typical classifiers [38]
for word classification, i.e., decision tree (DT), random
forest (RF), logistic regression (LR), k-Nearest Neighbor
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TABLE 4
Accuracy of word classification using deep learning based methods

AlexNet VGG16 ResNet18

1 syllable 80.33% 79.60% 84.77%

2 syllables 79.39% 81.89% 86.61%

3 syllables 81.25% 80.92 87.83%

Confused 77.36% 77.22% 81.86%

All words 80.23% 80.55% 85.87%

Note: The best performance in each setting/row is shown in bold.

(kNN), linear Support Vector Machine (SVM), to provide
the benchmark evaluation. In Table 3, we show the recogni-
tion/classification accuracy of words on LIPCMD dataset,
where ‘1 Syllable’, ‘2 Syllables’, ‘3 Syllables’, ‘Confused
words’, ‘All words’ respectively mean the words having
one syllable, two syllables, three syllables, similar pronun-
ciations, and all the words, as mentioned in Section 3.2. As
shown in Table 3, when the features and classifier are fixed,
as the number of syllables increases, the recognition accu-
racy usually increases. In regard to words having similar
pronunciations, they are easy to be confused, thus the recog-
nition accuracy is poor. Overall, when using the handcrafted
features, the recognition accuracy is rather low. Specifically,
when using frequency features, the recognition accuracy
is usually smaller than 15%. When using time-frequency
features, the recognition accuracy is usually smaller than
40%, whichever the classifier is used. It indicates that it is
rather difficult to use traditional machine learning based
methods to achieve a good performance for acoustic-based
lip reading, more efficient approaches are expected.

4.2 Deep Learning based Methods

Different from the handcrafted features used in classi-
cal machine learning based methods, deep learning based
methods can automatically extract features from input data
and realize word classification in an end-to-end way. Specif-
ically, in the benchmark evaluation, the input to the deep
learning methods is the signal gradient matrix, as described
in Section 4.1.1. While the adopted deep learning methods
are typical convolutional networks i.e., AlexNet [39], VGG16
[40], and ResNet18 [41].

In Table 4, we show the word recognition accuracy using
deep learning based methods on LIPCMD dataset. When
comparing Table 4 and Table 3, we can find that deep
learning based methods greatly improve the recognition
accuracy, i.e., close to or larger than 80%. The reason may be
that deep learning based methods can automatically extract
features from input signal gradient matrix, thus getting
more efficient feature representation for each acoustic-based
word. According to Table 4, as the number of syllables in-
creases, the recognition accuracy usually increases. In regard
to the easily-confused words with similar pronunciations,
the recognition accuracy decreases a little. Among the three
deep learning based methods, ResNet18 achieves the best
performance in all aspects. For all the words on LIPCMD
dataset, the recognition accuracy using ResNet18 is 85.87%.
It indicates that deep learning based method is possible to
achieve a high performance for acoustic-based lip reading.

5 THE PROPOSED SELF DISTILLATION BASED AP-
PROACH FOR LIP READING

As described in Section 4, when using the traditional
machine learning based methods for lip reading, the recog-
nition performance is rather poor, i.e., less than 40%. When
using the typical deep learning based methods, the recog-
nition accuracy is about 80%. It is still a challenging task to
achieve a high performance for acoustic-based lip reading
on a large-scale dataset. To further improve the recogni-
tion performance, we first provide some observations of
acoustic-based lip motions to analyze the challenges in lip
reading. Then, we provide a self distillation-based deep
learning approach LipReader to improve the representation
of acoustic signals for better lip reading.

5.1 Data Preprocessing and Observations
Observation 1. The acoustic signals caused by silent speech are

very weak and easily buried by the emitted signals from speaker
and other interference signals. Take the word ‘add’ as an exam-
ple, in Fig. 4, we show the acoustic signals in time domain
and frequency domain. Specifically, Fig. 4a shows the col-
lected acoustic signals for ‘add’ in time domain, where the
pink rectangle corresponds to the duration that the user is
silently speaking the word. Compared with the background
signals out of the pink rectangle, the variation of acoustic
signals caused by silent speech is weak. It is difficult to
directly use time-domain signals for lip reading. Therefore,
we further introduce short-time Fourier transform [36] to
transform the acoustic signals of ‘add’ in Fig. 4a to time-
frequency domain, as shown in Fig. 4b. According to Fig.
4b, when the user silently speaks a word, the collected sig-
nals mainly consist of the Line-Of-Sight (LOS) signals from
speaker, the lip related signals caused by lip movements, the
airflow related signals caused by silent pronunciation, and
the low-frequency audible sounds caused by interferences,
as shown in Fig. 4b. When considering that the Doppler
shift caused by silent speech ranges in [-20, 40]Hz [4], we
use the frequency window [f0-40, f0+40]Hz to get the silent
speech related signals, while filtering the other interference
signals, as shown in Fig. 4c. Here, f0=20kHz means the
frequency of emitted signals (main frequency for short) from
speaker. According to Fig. 4c, the signals caused by silent
speech, i.e., lip motions and airflow related signals, are
rather weak, when compared with the main frequency. This
is one reason why the recognition accuracy of traditional
machine learning based methods is rather low.

Observation 2. Different people show non-negligible difference
in lip motions and pronunciations for the same word. According
to observation 1, the signals caused by silent speech are
rather weak, when compared with the emitted signals from
speaker. Therefore, we introduce signal gradient [37] to get
the difference of signals at two consecutive time points from
the time-frequency map, i.e., dt = st � st�1, to remove
the main frequency and extract the signals related to silent
speech. Here, st and st�1 mean the signal at time t and t�1
respectively, while dt means the difference (i.e., gradient)
between st and st�1. In Fig. 5 and Fig. 6, we show the
signal gradient matrices corresponding to the word ‘add’
and ‘begin’ spoken by different users, respectively. When
comparing Fig. 5a and Fig. 6a, we can find that the acoustic
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(a) ‘add’ in time domain

Line-of-Sight signals

Airflow

Interference sounds

Lip motions

(b) ‘add’ in time-frequency domain (c) ‘add’ in a window
Fig. 4. Acoustic signals of ‘add’ in time domain, time-frequency domain when silently speaking the word.

(a) Subject 1 (b) Subject 2

Fig. 5. Signal gradient matrices of silently speaking the word ‘add’ by
two subjects.

(a) Subject 1 (b) Subject 2
Fig. 6. Signal gradient matrices of silently speaking the word ‘begin’ by
two subjects.

signals of different words are different, which indicates that
it is possible to use signal gradient matrix to distinguish
different words for lip reading. However, when comparing
Fig. 5a and Fig. 5b (or Fig. 6a and Fig. 6b), we can find that
different people lead to non-negligible difference of signals
for the same word. The difference is mainly caused by
different user habits, including lip motions, pronunciation,
breathing pattern in speaking etc, and it greatly increases the
difficulty for word classification (i.e., lip reading). Therefore,
the existing research work on lip reading tended to perform
the evaluation in user-dependent way.

5.2 Overview of Self Distillation Mechanisms
As described in benchmark evaluation, the traditional

machine learning based methods can hardly achieve a good
performance for lip reading, due to the poor handcrafted
features. While for deep learning based methods, they can
automatically extract features and improve the recognition
accuracy, especially for ResNet18. However, considering the
weak signals caused by silent speech, we further introduce
the self distillation technology [42] [43], which is used to
teach the neural network to learn from itself, then im-
prove feature representation and classification performance.
Specifically, we propose LipReader by selecting ResNet18 as
the backbone network and introducing two kinds of self

distillation mechanisms among ResBlocks of ResNet18, i.e.,
probability distribution based self distillation and attention
map based self distillation, to improve the feature represen-
tation and classification performance for lip reading.

5.3 Self Distillation Based on Probability Distribution
In the original ResNet18 [41], there are 18 layers, which

mean a convolutional layer, four ResBlocks and a fully-
connected layer. After the fully-connected layer, a softmax
classifier is used for classification. In regard to the ResBlock,
it is consisted of four 3 ⇥ 3 convolutional layers, two skip
connections, and two addition operations. In LipReader, the
backbone network is ResNet18, while the input is signal
gradient matrix with the size of 68 ⇥ 300, as shown in
Fig. 7. To further enhance the classification performance, we
introduce the Probability Distribution (PD for short) based
self distillation mechanism. Specifically, in addition to the
exiting classifier after the fourth ResBlock, we also insert
the intermediate classifiers after the first, second, and third
ResBlock, as the bottom part shown in Fig. 7. Here, the
Bottleneck is consisted of 1 ⇥ 1, 3 ⇥ 3, 1 ⇥ 1 convolutional
layers, one skip connection and one addition operation, and
it is used for changing the dimension of features. In regard
to the newly inserted intermediate classifiers, they are only
adopted in training phase while being removed in testing
phase. In the training phase, the original/last classifier
distills the knowledge into the previous three classifiers, to
guide the previous three ResBlocks to extract more efficient
features for classification. For convenience, the last ResBlock
and classifier are treated as a teacher model, while the
previous three ResBlocks and three classifiers are treated as
a student model.

To distill the knowledge from the teacher model to stu-
dent model, we design the following Kullback-Leibler (KL)
divergence loss. For convenience, we use C to represent
the number of classes (i.e., types of words), while using
X = {xn}Nn=1 to represent the N samples in C classes.
Besides, we use M to represent the number of classifiers (i.e.,
M = 4), while using ⇥m, m 2 [1,M ] to represent the ith
classifier. Then, when given the sample xn, we can describe
the output probability q

m
c (xn) after the mth classifier for the

cth class with Eq. (1), where z
m
c (xn) means the output logit

of the sample xn after the mth classifier for the cth class.
Here, T represents the temperature [44] in the distillation
and it is set to 3 by default.

q
m
c (xn) =

exp( z
m
c (xn)
T )

PC
j=1 exp(

zm
j (xn)

T )
(1)
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Fig. 7. A self distillation based approach, which includes the backbone network ResNet18, the probability distribution based self distillation and the
attention map based self distillation.

With the probability q
m
c (xn), we can calculate the KL diver-

gence loss Lp between the teacher model and the student
model with Eq. (2). Specifically, qm(xn), m 2 [1,M � 1]
means the probability distribution from the previous classi-
fier (i.e., student model), while q

M (xn) means the probabil-
ity distribution from the last classifier (i.e., teacher model).
When comparing q

m(xn) and q
M (xn), i.e., calculating the

KL loss between them, we can distill the knowledge from
teacher model to student model.

Lp(q
m
, q

M ) =
1

N

NX

n=1

CX

c=1

q
M
c (xn) · log

q
M
c (xn)

qmc (xn)
(2)

Since the teacher model has the final softmax classifier
which is used for classification, it has the ability to distin-
guish good (i.e., class-sensitive) features and poor (i.e., class-
insensitive) features based on classification results. There-
fore, when the teacher model distills the probability distri-
bution in classification to the student model, the student
model will learn how to extract good features to improve
classification performance.

To verify whether the probability distribution based
self distillation mechanism can improve the classification
performance, we provide the word recognition accuracy on
LIPCMD dataset, while using and NOT using self distilla-
tion. In Fig. 8, we show the classification performance of
each classifier, while using the samples from 5 randomly-
selected users. Usually, whether using or NOT using self
distillation mechanism, the deeper classifier can achieve a
better performance. However, when using the self distil-
lation mechanism (i.e., the yellow bar), each classifier can
further improve the lip reading performance, especially
the shallower classifiers. It indicates that each ResBlock
has learned from the teacher model to distinguish useful
features and unuseful features, then focusing on the use-

1st Classifier 2nd Classifier 3rd Classifier 4th Classifier
0

0.2

0.4

0.6

0.8

1
Ac

cu
ra

cy
Without PD
With PD

Fig. 8. Classification accuracy of each classifier when using and NOT
using probability distribution (PD) based self distillation mechanism

ful/good features contributing to higher classification per-
formance. Therefore, the proposed probability distribution
based self distillation mechanism can efficiently highlight
the class-sensitive features, and improves classification per-
formance.

5.4 Self Distillation Based on Attention Map
To further improve the feature representation, we pro-

pose the Attention Map (AM for short) based self distillation
mechanism, where the attention map is used to describe
the importance of extracted features. Specifically, by adopt-
ing ResNet18 as the backbone network, we generate an
intermediate attention map after the first, second, third and
fourth ResBlock, respectively, as the top part shown in Fig.
7. The newly generated intermediate attention maps are
only adopted in training phase while removed in testing
phase. In the training phase, the latter attention map distills
the knowledge (i.e., importance of different features) to the
previous and adjacent attention map, to guide the previous
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Input signal 
gradient matrix

Using AM based self distillation

NOT using AM based self distillation

1st Attention map 2nd Attention map 3rd Attention map 4th Attention map

1st Attention map 2nd Attention map 3rd Attention map 4th Attention map

Fig. 9. Attention map after each ResBlock when using and NOT using attention map based self distillation mechanism.

ResBlock to focus on the important/efficient features. For
convenience, the latter ResBlock and attention map are
treated as a teacher model, while the previous and adjacent
ResBlock and attention map are treated as a student model.

To distill the knowledge from teacher model to student
model, the key is to get the attention map. In LipReader, we
use the output from each ResBlock to generate the attention
map. Specifically, we use Oi, i 2 [1, 4] to represent the
output (i.e., intermediate feature maps) of the ith ResBlock.
Here, Oi 2 Rhi⇥wi⇥li , where hi, wi and li mean the height,
the width and the number of channels (i.e., number of
feature maps) of Oi, respectively. For convenience, we use
Oi(x, y, z) to represent the element in the xth row and
the yth column of the zth feature map, where x 2 [1, hi],
y 2 [1, wi] and z 2 [1, li]. Then, we use the activation-
based mapping function [45] to generate the attention map
Ai from Oi with Eq. (3). Here, Ai 2 Rhi⇥wi , while Ai(x, y)
means the element in the xth row and the yth column,
x 2 [1, hi], y 2 [1, wi].

Ai(x, y) =
liX

z=1

|Oi(x, y, z)|2 (3)

With the attention map Ai, i 2 [1, 4] after the ith ResBlock,
we utilize the block-wise distillation loss La(Ai, Ai+1)
to distill the knowledge from the latter attention map
Ai+1 to the previous and adjacent attention map Ai with
Eq. (4). Here, the function P(·) means the upsampling
[46] operation, which is used to align the attention maps
with different sizes. The function L2(·, ·) is used to cal-
culate L2 loss. Specifically, when representing Ai and
P(Ai+1) with U and V , we can calculate L2(U, V ) =Ph

x=1

Pw
y=1

(U(x,y)�V (x,y))2

h·w , where U(x, y), V (x, y) mean
the element in the xth row and the yth column of U and V ,
respectively.

La(Ai, Ai+1) = L2(Ai,P(Ai+1)) (4)

Usually, the deeper layers of neural network can extract
better features, while the shallower layers can hardly extract
good features. Therefore, by distilling the latter attention
map to the previous attention map, the previous layers

can learn the importance of different features and focus on
extracting the important and meaningful features.

To verify whether attention map based self distillation
mechanism can improve the feature representation, we re-
spectively show the attention maps after the first, second,
third, fourth ResBlock, while using and NOT using atten-
tion map (AM) based self distillation mechanism during
training. As shown in Fig. 9, the leftmost map means the
input signal gradient matrix corresponding to word ‘add’,
while the gray-scale images represent the attention maps
outputted after each ResBlock. Specifically, in gray-scale
images, the white region corresponds to the features paid
more attention (i.e., important features) by the ResBlock.
When comparing the gray-scale images in the top row and
that in the bottom row, especially for the regions marked
with yellow ellipses, we can find that when using self dis-
tillation, the extracted features in the shallower layers and
deeper layers have better consistency. That is to say, using
attention map based self distillation can help the shallower
layers learn the importance of features from the latter layers
and quickly focus on the important features, thus improve
feature representation.

5.5 Model Training
To apply the probability distribution based self distilla-

tion and attention map based self distillation on ResNet18,
we design three kinds of losses. Specifically, the first loss
Lc is designed for the last classifier and used for word
classification. For convenience, we use yn,c to represent the
label (i.e., true class) of sample xn, where n 2 [1, N ] and
c 2 [1, C]. If the label of xn belongs to the cth class, then
yn,c = 1. Otherwise, yn,c = 0. After that, we can calculate
the cross entropy loss Lc with Eq. (5), where q

M
c (xn) means

the probability that the sample xn is classified as the cth
class by the M th/last classifier.

Lc = � 1

N

NX

n=1

CX

c=1

yn,c · log(qMc (xn)) (5)

The second loss Lp is designed for probability distribution
based self distillation, aiming to improve the classification
performance of intermediate classifiers and highlight the
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Fig. 10. The fine-tuning strategy used for domain adaptation

class-sensitive features. Lp a Kullback-Leibler divergence
loss and computed with Eq. (6), where Lp(qm, q

M ) is cal-
culated with Eq. (2).

Lp =
M�1X

m=1

Lp(q
m
, q

M ) (6)

The third loss La is designed for attention map based self
distillation, aiming to make the shallow layers learn the
importance of features and focus on important features, thus
improving the feature representation of each word. La is
computed with Eq. (7), where La(Ai, Ai+1) is calculated
with Eq. (4).

La =
M�1X

i=1

La(Ai, Ai+1) (7)

Finally, we combine the three losses and define the overall
loss L with Eq. (8) for model training, where ↵ and � are
two hyper-parameters to balance the three kinds of losses.
In this paper, we set ↵ = 0.1 and � = 10�6 by default.

L = (1� ↵) · Lc + ↵ · Lp + � · La (8)

6 FINE-TUNING FOR DOMAIN ADAPTATION

According to Observation 2, the non-negligible dif-
ference among users may confuse the recognition of
same word, thus the existing work tended to work in
user-dependent way while could hardly work in user-
independent way. To address this issue, we propose a
fine-tuning strategy to make LipReader adapt to different
domains, e.g., different users. As shown in Fig. 10, the
fine-tuning strategy has three stages, i.e., pre-training stage,
copying stage, and fine-tuning stage. Firstly, we utilize
large-scale training samples from one or more domains to
train a base model, which has a good ability of feature
extraction and word classification for seen/known domains
while may not work well for unseen/unknown domains.
Secondly, we copy the components (i.e., feature extractor
Fp, fully-connected layer Wp, softmax function Sp) of the
above pre-trained model to generate a duplicated model,
which is used to accelerate the convergence speed of the

following model fine-tuning. Thirdly, we only use a few
training samples from the new/unseen domain to fine tune
the duplicated model and get a new model, which has
the same structure but different parameters Fn, Wn, Sn

compared with the pre-trained model. Here, the fine-tuned
new model can adapt to new/unseen users, thus can work
in user-independent way. It is worth noting that the fine-
tuning strategy does not need to be adopted everytime. In
fact, when the model needs to work in different domains,
e.g., for new users, the fine-tuning strategy will be adopted.
Otherwise, the strategy will not be adopted. Besides, as
a domain adaptation strategy, the fine-tuning strategy can
not only be used for user adaptation, but also for device
adaptation, environment adaptation, placement adaptation,
and so on.

7 PERFORMANCE EVALUATION

To evaluate the performance of proposed solution
LipReader on lip reading, we introduce the experiment set-
ting and conduct extensive experiments on LIPCMD dataset.
Firstly, we show the average word recognition/classification
accuracy, and analyze the performance from the aspect of
words and users. Secondly, we perform the ablation study
to test the efficiency of designed self distillation compo-
nents of LipReader, i.e., probability distribution based self
distillation and attention map based self distillation. Thirdly,
we evaluate how the training size, device placement, and
complex scenarios affect the performance of lip reading.
Finally, we compare our proposed LipReader with the ex-
isting lip-reading methods. It is worth noting that unless
otherwise specified, LipReader works in user-dependent way
by default.

7.1 Experiment Setting
Before conducting the following experiments, we first

introduce the detailed settings of LipReader, including the
input data, model parameters, model training and model
implementation. For the input signal gradient matrix to
neural network, the height is set to 68, while the width
is set to 300 by default. If the duration of a sample is
short, i.e., the width of signal gradient matrix is smaller
than 300, we will pad the matrix with zeros in the left
side and right side symmetrically until the width achieves
300. Besides, to get enough input data (i.e., signal gradient
matrix) for model training, we introduce data augmenta-
tion. Specifically, we use time-dimensional cropping, data
masking and size scaling strategies for data augmentation.
Here, time-dimensional cropping strategy randomly crops
the data in left (or right) columns, and then pads the matrix
with zeros in right (or left) side. Data masking strategy
randomly sets the data in some rows or columns to zero.
Size scaling strategy treats the input matrix as an image, and
then stretches or compresses the matrix/image in horizontal
or vertical direction around the center of matrix/image. In
this way, we can increase the training size to 30 times of
the original one. For the model parameters, the backbone
network is ResNet18. Considering that the channel of input
signal gradient matrix is 1, we modify the channel of the
first layer in ResNet18 to be 1, while keeping the others
same with ResNet18. For model training, we adopt the
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Fig. 11. The accuracy of LipReader vs. different users

TABLE 5
Recognition accuracy of words in different categories

LipReader

1 syllable 90.97%

2 syllables 91.67%

3 syllables 93.00%

Confused words 88.61%

All words 91.58%

Adam optimizer [47]. For model implementation, LipReader
is implemented with PyTorch 1.5.1 and trained for 200
epochs on two NVIDIA Tesla V100 GPUs.

7.2 Accuracy on Lip Reading
In this subsection, we first evaluate the performance

of LipReader on lip reading in terms of word recogni-
tion/classification accuracy. To keep the consistency with
benchmark evaluation, we respectively show the recogni-
tion accuracy of words with one syllable, two syllables and
three syllables, as well as confused words and all words. As
shown in Table 5, as the number of syllables increases, the
recognition accuracy increases. For the three-syllable words,
our LipReader can even achieve the accuracy of 93.00%.
When moving to the confused words, which have similar
pronunciation, the recognition accuracy drops to 88.61%.
However, on average, the recognition accuracy of all words
on LIPCMD dataset can achieve 91.58%. When compared
with the benchmark evaluation, which is shown in Table 3
and Table 4, our proposed LipReader can apparently improve
the performance of lip reading. It indicates the efficiency of
LipReader on acoustic-based lip reading.

7.2.1 Analysis about User Difference
When considering the user difference, we also analyze

the word recognition accuracy for each user. Specifically,
for each user, we average the recognition accuracy of all
words. As shown in Fig. 11, for most of users, the word
recognition accuracy is close to or larger than 90%. Take
the sixth user as an example, the recognition accuracy can
achieve 96.67%. While for some user, e.g., the third user, the
recognition accuracy is a little low, i.e., 85%. The difference
is mainly caused by the different speech habits of users, e.g.,

different amplitudes of lip motions, different pronunciation
manners, different speaking speeds. Usually, when the user
speaks with a large lip motion, clear pronunciation and
normal speed, LipReader can achieve a good recognition
accuracy. When the user tends to speak with a very small lip
motion or a very fast speed, the word recognition accuracy
will decrease. However, on average, we can achieve a good
recognition accuracy on 50 types of words, i.e., 91.58%, even
the users have different habits in speech.

7.2.2 Analysis about Word Difference
When considering the difference in words, we further

analyze the recognition accuracy for each type of word. As
shown in Fig. 12, we show the confusion matrix of word
recognition accuracy on LIPCMD dataset, which consists
of 50 types of words. In Fig. 12, the element in the ith
row and the jth column means the probability that the
ith word is recognized as the jth word in Table 1. There-
fore, the diagonal elements correspond to the recognition
accuracy of each word, i.e., the probability that the word is
correctly recognized, while the other/off-diagonal elements
correspond to the recognition error rate, i.e., the probability
that the word is wrongly recognized. According to Fig. 12,
our LipReader can achieve a good performance on acoustic-
based lip reading. For each word, the recognition accuracy
is larger than 84%. For some words, e.g., the 22th word
‘stop’ and the 24th word ‘up’, the recognition accuracy can
achieve 98%. While for some word, e.g., the 18th word
‘send’, the recognition accuracy is a little low, e.g., 84%. The
difference on recognition accuracy mainly comes from the
number of syllables and manner of pronunciation in a word,
and the similar pronunciations among words. However, on
average, the word recognition accuracy of our proposed
LipReader can achieve 91.58%, and it is obviously superior
than the solutions in benchmark evaluation where the best
recognition accuracy is 85.87%.

7.3 Ablation Study
To evaluate the contributions of designed self distillation

mechanisms in LipReader, we perform the following ablation
study. Specifically, we respectively remove the Probability
Distribution (PD for short) based self distillation compo-
nent, Attention Map (AM for short) based self distillation
component, and both of them from LipReader, and then test
the recognition accuracy on LIPCMD dataset. According to
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Fig. 12. Confusion matrix of word recognition accuracy on LIPCMD dataset, where the NO. of word can be found in Table 1

TABLE 6
Ablation study on self distillation mechanisms

LipReader Without PD Without AM Without PD+AM

91.58% 89.05% 87.35% 85.87%

Note: PD: Probability Distribution based self distillation, PA: Attention
Map based self distillation

Table 6, when removing the probability distribution based
self distillation mechanism (i.e., ‘Without PD’ in the second
column), attention map based self distillation mechanism
(i.e., ‘Without AM’ in the third column), the recognition
accuracy decreases by 2.53%, 4.23%, respectively. When
removing both of the two self distillation mechanisms (i.e.,
‘Without PD+AM’ in the fourth column), the recognition
accuracy decreases by 5.71%. It indicates that each of the
above self distillation mechanisms contributes to a higher
recognition performance. Overall, by making full use of the
intermediate information (i.e., probability distribution, at-
tention map) in neural network, self distillation mechanisms
can make the neural network improve feature representa-
tion of silent speech and achieve a good performance of lip
reading.

7.4 Effect of Training Size
To evaluate how the training size affects the word

recognition performance. We change the number of training
samples of each word. In LIPCMD dataset, for each person,
there are 30 samples for each word, where 24 samples (i.e.,
80%) are used for training while the remaining 6 samples
(i.e., 20%) are used for testing. This is a default setting.
However, in the following experiment, for each person,
we change the number of training samples of each word
from 9 (i.e., 30%) to 24 (i.e., 80%), where the step length
is 3 (i.e., 10%). When the number of training samples is
fixed, we average the recognition accuracy of all words.
As shown in Fig. 13, when the training size is small (e.g.,
9 training samples), the recognition accuracy is rather low,

i.e., 70.83%. This is because training with a few samples can
lead to the problem of overfitting and hardly get a good
neural model for lip reading. As the training size increases,
the word recognition accuracy increases. When the number
of training samples achieves 24, our LipReader can achieve
a good recognition accuracy of 91.58%. Therefore, while
considering the recognition performance and enough test
samples on LIPCMD dataset, we randomly select 80% of
samples for training and use the remaining 20% of samples
for testing.

7.5 Effect of Device Placement
Effect of distance between mouth and microphone:

In this experiment, we evaluate LipReader by varying the
distance between user’s mouth and smartphone’s bottom
microphone. Firstly, given a fixed distance (i.e., 2cm), we
invite one volunteer to collect 24 samples for each type of
word, and get 24 ⇥ 50 = 1200 samples for model training.
Secondly, we invite the same volunteer to collect 6 samples
for each type of word at different distances, which range in
[1, 6]cm and change by 1cm, and then get 6 ⇥ 50 = 300
test samples under each distance. After that, we use the
previous trained model to evaluate lip reading performance
on test samples at each distance. As the blue line shown
in Fig. 14, when the testing samples and training samples
are collected at the same distance (i.e., 2cm), the recognition
accuracy achieves the highest (i.e., 92.33%). Otherwise, the
recognition accuracy decreases. When we train the model
with samples collected at other distances, i.e., 3cm or 4cm,
the above phenomenon still exists, as the black line and red
line shown in Fig. 14. It indicates that keeping the same
distance in training and testing can guarantee a good per-
formance, while testing with unseen signals from different
distances may decrease the performance.

To make LipReader adapt to new/unseen distances, we
can adopt the fine-tuning strategy in Section 6. Specifically,
at a new distance, we invite the same volunteer to addi-
tionally collect 6 samples for each type of word. Then, we
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TABLE 7
Recognition accuracy of LipReader at different distances

Train:
3cm

Test: 5cm

Without fine-tuning With fine-tuning

44.33% 91.33%

use these samples to fine tune the pre-trained model, and
use the fine-tuned model for testing. As shown in Table
7, after fine tuning, the word recognition accuracy at the
new distance (i.e., 5cm) increases from 44.33% to 91.33%. It
indicates that LipReader can adapt to new distances with fine
tuning and achieve a good performance for lip reading.

Effect of angle between face’s plane and smartphone’s
surface: In this experiment, we evaluate LipReader by vary-
ing the angle between face’s plane and smartphone’s sur-
face. Firstly, given a fixed angle (i.e., 90�), we invite one
volunteer to collect 24 samples for each type of word, and
get 24⇥ 50 = 1200 samples for model training. Secondly, we
invite the same volunteer to collect 6 samples for each type
of word at different angles, which range in [50, 130]� and
change by 10�, and then get 6 ⇥ 50 = 300 test samples at
each angle. After that, we use the previous trained model to
evaluate LipReader on test samples from different angles. As
the blue line shown in Fig. 15, when the testing samples and
training samples are collected at the same angle (i.e., 90�),
the recognition accuracy achieves the highest (i.e., 95%).
Otherwise, the recognition accuracy decreases. When we
train the model with samples collected at other angles, i.e.,
60� or 120�, the above phenomenon still exists, as the black
line and red line shown in Fig. 15. It indicates that keeping
the same angle in training and testing can guarantee a
good performance, while testing with unseen signals from
different angles may decrease the performance.

To make LipReader adapt to new/unseen angles, we can
adopt the fine-tuning strategy in Section 6. Specifically, at
a new angle, we invite the same volunteer to additionally
collect 6 samples for each type of word. Then, we use these
samples to fine tune the pre-trained model, and use the
fine-tuned model for testing. As shown in Table 8, after
fine tuning, the word recognition accuracy at the new angle
(i.e., 120�) increases from 60.67% to 92.67%. It indicates that
LipReader can adapt to new angles with fine tuning and
achieve a good performance for lip reading.

TABLE 8
Recognition accuracy of LipReader at different angles

Train:
90�

Test: 120�

Without fine-tuning With fine-tuning

60.67% 92.67%
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Fig. 16. Recognition accuracy of words collected in different ways

7.6 Effect of Complex Scenarios

Effect of word source: In the proposed dataset, each
word is spoken separately. However, in fact, a word is often
spoken in a sentence. To test the robustness of LipReader in
real scenarios, we invite one volunteer to speak 5 randomly-
selected words (i.e., ‘help’, ‘run’, ‘music’, ‘record‘ and ‘cam-
era’). First, the volunteer speaks each word 30 times sepa-
rately and we get 30 samples for each single word. Second,
the volunteer speaks each word in sentences. Specifically,
there are 5 sentences and each sentence contains one se-
lected word. The volunteer speaks each sentence 30 times,
and we manually segment the signal corresponding to the
selected word based on recorded video. Then, we can get
30 samples for each selected word. After that, we adopt
the trained model from the same volunteer, to recognize
the words collected separately and those collected from
sentences, respectively. As shown in Fig. 16, the recognition
accuracy of words in sentences is a little lower than that
of single words. This may be caused by the little difference
in acoustic signal between the word in a sentence and the
single word, since the words in a sentence may affect each
other in pronunciation.
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TABLE 9
Recognition accuracy of LipReader in different sessions

Single session Multiple sessions

96.67% 96.00%

TABLE 10
Recognition accuracy of LipReader with user movement

Still Walking Jogging

96.67% 80.33% 56.67%

Effect of multiple sessions: In the proposed dataset,
the signals corresponding to the same word are collected
in a single session. However, in a real scenario, the user can
speak the same word at different time, e.g., different days.
To verify whether LipReader can achieve high performance
of lip reading in different sessions, we invite one volunteer
to speak each word 30 times in five days, i.e., speaking each
word 6 times in a day and repeating the process in the
following four days. Then, we select the samples collected
in four of these days for training, while using the remaining
samples for testing. As shown Table 9, the word recognition
accuracy under different sessions achieves 96.00%, which is
comparable to the recognition accuracy (i.e., 96.67%) under
single session. It indicates that speaking in different sessions
has little effect on lip reading performance. The reason may
be that user habit changes little in different sessions.

Effect of user movement: In previous experiments,
when the user silently-speaks a word, she/he keeps still,
i.e., not moving. In fact, when the user uses LipReader,
she/he can walk here and there. Thus in the experiment,
we test the performance of LipReader, when the user speaks
and walks at the same time. Specifically, we invite one
volunteer to speak each word 6 times, and get 6 ⇥ 50 =
300 samples for testing. After that, we adopt the trained
model corresponding to the same volunteer for evaluation.
As shown in Table 10, speaking while walking may lead to
the decrease of word recognition accuracy. However, when
the user moves with a slow speed, e.g., in walking state, the
word recognition accuracy can still achieves 80.33%.

Effect of devices: Considering the difference of devices,
we also evaluate LipReader on other device, i.e., Xiaomi
Redmi K40 Pro. Specifically, when using the new device,
we invite one volunteer to collect 6 samples for each type
of word, and get 6 ⇥ 50=300 test samples. Then we use
the trained model corresponding to the same volunteer for
evaluation. As shown in Table 11, the word recognition
accuracy is 72.33%. The decrease of performance may be
caused by the difference of signals, since the model is
trained with signals from Samsung S9 smartphone while
testing with signals from Redmi K40 smartphone. To reduce
the effect of different devices, we introduce the fine-tuning
strategy presented in Section 6, to make LipReader adapt
to new device. Specifically, in a new device, the volunteer
additionally collects 6 samples for each type of word. Then,
we use these collected samples to fine-tune the pre-trained
model, and use the fine-tuned model for testing. As shown

TABLE 11
Recognition accuracy of LipReader on different devices

Train:
Samsung S9

Test: Redmi K40

Without fine-tuning With fine-tuning

72.33% 90.67%

TABLE 12
Recognition accuracy of LipReader under different environments

Train:
Office

Test: Mall

Without fine-tuning With fine-tuning

64.00% 84.67%

Test: Street

Without fine-tuning With fine-tuning

48.33% 85.33%

in Table 11, after fine-tuning, the lip reading performance
increases to 90.67%, i.e., LipReader can adapt to new device.

Effect of environments: Considering the noises from
environments, we evaluate LipReader under new environ-
ments, i.e., mall and street. Specifically, in a new environ-
ment, the volunteer collects 6 samples for each type of
word, and gets 6 ⇥ 50 = 300 testing samples. After that,
we adopt the trained model in office (see Fig. 2) to evaluate
LipReader on test samples in mall or street. As shown in
Table 12, the different environments in training and testing
lead to the decrease of lip reading performance. To reduce
the effect of different environments, we introduce the fine-
tuning strategy presented in Section 6, to make LipReader
adapt to new environments. Specifically, under each new
environment, the volunteer additionally collects 6 samples
for each type of word. Then, we use these collected samples
to fine-tune the pre-trained model, and use the fine-tuned
model for testing. As shown in Table 12, after fine-tuning,
the lip reading performance increases to 84.67% and 85.33%
in mall and street, respectively. That is to say, LipReader can
adapt to new environment with fine tuning.

7.7 Comparison with Previous Work
7.7.1 User-dependent Lip Reading

As described in Observation 2 of Section 5.1, the exist-
ing work often evaluates the performance of lip reading
in user-dependent way. Therefore, in this subsection, we
compare the proposed LipReader with EchoWhisper [5] and
Endophasia [14] in user-dependent way. Here, EchoWhisper
[5] and Endophasia [14] focused on word-level lip reading
by acoustic signals, as mentioned in Section 2. Besides,
EchoWhisper [5] enhanced the emitted acoustic signals by
utilizing two microphones, Endophasia [14] modulated the
emitted acoustic signals with GSM training sequence, while
our LipRerader only adopts one microphone to receive con-
tinuous wave. When considering the lack of emitted signals
(i.e., raw data) from EchoWhisper and Endophasia, we
make the comparison on our LIPCMD dataset. Specifically,
for each sample on LIPCMD dataset, we provide the same
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TABLE 13
Comparison of LipReader and other approaches on LIPCMD dataset

LipReader EchoWhisper Endophasia

1 syllable 90.97% 79.07% 84.77%

2 syllables 91.67% 78.67% 86.61%

3 syllables 93.00% 81.75% 87.83%

Confused words 88.61% 74.31% 81.86%

All words 91.58% 79.48% 85.93%

input, i.e., signal gradient matrix, to LipReader, EchoWhis-
per and Endophasia for recognition/classification. After
that, we compare the recognition accuracy of LipReader,
EchoWhisper and Endophasia on one-syllable words, two-
syllable words, three-syllable words, confused words, and
all words, respectively. As shown in Table 13, whatever the
words are, our LipReader can achieve a better recognition
performance. Take ‘all words’ as an example, the recognition
accuracy of LipReader is 91.58%, which outperforms that of
EchoWhisper and Endophasia by 12.10% and 5.65%, respec-
tively. It indicates that our LipReader can achieve a good
performance of acoustic-based lip reading and outperforms
the previous work in terms of user-dependent performance.

7.7.2 User-independent Lip Reading
To adapt to new users, we propose a fine-tuning strategy

to allow LipReader to work in user-independent way, as
described in Section 6. Therefore, in this experiment, we also
evaluate the performance of LipReader in user-independent
way, and compare it with Endophasia [14] which adopted
Few-Shot Adversarial Domain Adaptation (FADA) method
for user adaptation. Specifically, we randomly invite 10
volunteers to participate in the experiment. Everytime, we
select the samples from 9 volunteers (i.e., training users)
for model training. In regard to the other volunteer (i.e.,
test user), we adopt a part of samples (i.e., 0% - 80%) of
each word for fine-tuning in LipReader or re-training in En-
dophasia, while using the remaining samples (i.e., 20%) for
testing. Each volunteer will be selected for testing once, and
we average the results of different volunteers. As shown in
Fig. 17, we use blue, yellow bar to represent the recognition
performance of LipReader, Endophasia, respectively. When
no samples of the test user are adopted (for fine-tuning or
re-training), the recognition accuracy is low. However, when
using only a small number of samples (e.g., 6 samples of
each word) from test user, the recognition accuracy increases
a lot, i.e., 83.67% for LipReader and 68.67% for Endophasia.
As the number of samples from test user increases, the
recognition accuracy also increases. Usually, our LipReader
can achieve a better performance than Endophasia. In ad-
dition, the fine-tuning cost of LipReader is less than the
re-training cost of Endophasia, since LipReader only needs
a few samples from test user to fine tune the pre-trained
model, while Endophasia needs both a few samples from
test user and all samples from training users to re-train
the whole model. It indicates that the proposed fine-tuning
strategy can make LipReader adapt to new user well with a
small cost, i.e., only using a few samples from new user.
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Fig. 17. Comparison of LipReader and Endophasia in user-independent
way

8 CASE STUDY

In addition to evaluating the recognition performance of
LipReader on LIPCMD dataset, we also implement LipReader
on Samsung Galaxy S9 smartphone. First, we implement
LipReader with PyTorch and perform the model training
offline. Then, we use the ‘PyTorch Mobile’ [48] workflow
to transform the trained model to a lightweight model (i.e.,
42.6 MB) which can be deployed on smartphone. Besides,
to reduce the time latency of lip reading, we introduce the
multi-thread strategy to calculate the time-consuming Short-
Time Fourier Transform (STFT) in parallel. Specifically, since
Samsung S9 smartphone has 8 cores, we totally adopt 8
threads, including one main thread and other seven parallel
threads for STFT. As shown in Fig. 18, in STFT, the main
thread first divides time-domain acoustic signals into equal-
length segments. Then, the eight threads perform STFT on
divided segments in parallel. After that, the main thread
merges STFT results from segments to get the final STFT
result. In this way, we can achieve online lip reading for
mobile devices. It is worth noting that the deployed model
on smartphone belongs to a user-dependent model, since a
smartphone is usually used by a specific user.

In Fig. 19, we show a typical usage of LipReader on
smartphone. When the user presses the ‘START’ button,
LipReader immediately emits the acoustic signals. Then, the
smartphone records the acoustic signals corresponding to
silent speech, as the blue signals shown the right part of Fig.
19. After that, when the user releases the ‘START’ button,
LipReader stops recording and processes acoustic signals to
get the signal gradient matrix, as the color map shown in
the right part of Fig. 19. Finally, the signal gradient matrix
is input to the trained neural model, which outputs the
recognized result (i.e., ‘add’). It is worth noting that the
signals/images shown in Fig. 19 are used for illustration
and not shown in the real application.

When running LipReader on Samsung S9 smartphone,
we also evaluate the time latency and power consumption.
For time latency, it means the duration from releasing
‘START’ button (i.e., end of silent speech) to outputting
the recognition result. Totally, the time latency is 635ms,
including 206ms used for processing acoustic signals and
429ms used for recognizing the word. When compared with
the existing work on acoustic-based lip reading, we are the
first to achieve online word recognition in a mobile device
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Fig. 18. Multi-thread strategy adopted to perform STFT in parallel

with acceptable time latency. For power consumption, we
use BatteryHistorian [49] for measurement and the average
power consumption is 505.1±26.3mW. In the measurement,
we first measure power consumption P0 when only keeping
screen on, then we measure power consumption P1 when
running LipReader, which includes emitting acoustic signals,
processing signals and recognizing the word. After that,
we get the power consumption �P = P1 � P0 caused by
LipReader. In the experiment, we randomly invite 5 users
where everyone silently speaks 50 words, and then average
the power consumption in each test.

9 DISCUSSION

Microphone and acoustic signal: We use one embedded
microphone of smartphone and adopt sinusoidal signals
without modulation for lip reading, aiming to make the
approach work on device with weak sensing ability and
computing power. However, considering that current smart-
phones are often embedded with two microphones, using
more microphones to get enhanced acoustic signals for lip
reading can also be a good solution. Besides, applying suit-
able modulations on sinusoidal signals may provide better
acoustic signals for lip reading. To make LipReader work
with the enhanced or modulated signals, it is necessary
to appropriately preprocess the signals. In future, we will
make further research on these aspects.

Model fine-tuning: In Section 6, we propose a fine-
tuning strategy to update the pre-trained model, to make
the model adapt to new users. The model is pre-trained
on a server and the fine-tuning strategy is also performed
on the server. After fine tuning, the updated model on the
server will be sent back to mobile device for lip reading.
However, in some cases, the user may have no access to the
server or be not willing to upload the acoustic signals of
lip reading. To address this issue, the fine-tuning strategy
which can update the pre-trained model on mobile device is
expected. We will make the research in future.

Unexpected disturbances: The unexpected disturbances
caused by placement of device, user movement, device type,
and environment may affect word recognition accuracy. In
these cases, to achieve high performance of lip reading, we
can adopt the fine-tuning strategy, which requires to collect
a few samples in new scenarios. To further remove the labor
cost of collecting samples for fine tuning, in future, we
will try to use adversarial learning to reduce the effect of
disturbances.

Fig. 19. A typical case of using LipReader for lip reading

Phrase-level or sentence-level lip reading: This paper
focuses on word-level lip reading, where the acoustic signal
of each word is collected separately. This can be different
from phrase-level or sentence-level lip reading, where the
acoustic signals of consecutive words may be close to or
affect each other. Usually, if there is a suitable pause between
consecutive words, we can segment each word based on
pauses, and then adopt LipReader to recognize extracted
words for phrase-level or sentence-level lip reading in an in-
direct way. However, if the user speaks a phrase or sentence
quickly, i.e., word segmentation is difficult, more efficient
solutions will be expected.

10 CONCLUSION

In this paper, we utilize the acoustic signals emitted
from smartphone for lip reading. Considering the lack of
public dataset in acoustic-based lip reading, we propose and
release a lip-reading dataset LIPCMD. Besides, we provide
benchmark evaluation on the dataset. To improve the per-
formance of lip reading, we propose a self distillation based
approach LipReader, which distills the attention map and
probability distribution in the convolutional neural network
itself to improve feature representation and classification
performance. The extensive experimental results show that
LipReader can achieve a good recognition accuracy of 91.58%
for lip reading and outperforms the benchmark solutions
and previous work.
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