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Abstract—Among all the road accidents, speeding is the most deadly factor. To reduce speeding, it is essential to devise efficient
schemes for ubiquitous speed monitoring. Traditional approaches either suffers from using special equipment(e.g., radar speed gun) or
special deployment(e.g., position-fixed cameras). In this paper, we propose SpeedTalker, a mobile phone-based approach to perform
speed detection on automobiles. By leveraging the built-in microphones and camera from the mobile phone, SpeedTalker estimates the
automobile speed by passively sensing the acoustic and image signals. We propose an integrated solution to effectively estimate the
automobile’s speed based on COTS devices, and provide a platform for every pedestrian to help report the speeding event of
automobiles. Specifically, we use the time difference of arrivals (TDOA) model based on acoustic signals to figure out the candidate
trajectories of automobile, and use the pin-hole model based on image frames to figure out the vertical distance between the user’s
position and the automobile’s trajectory, thus to estimate the unique trajectory. Combined with the time stamp of the trajectory, the
automobile speed can be estimated. Besides, we propose a method to effectively mitigate the influence of the movement jitters of
mobile phone. We implemented a system prototype for SpeedTalker and estimated the automobile speed with high accuracy.
Experiment results show that in the scenario of single automobile, SpeedTalker can achieve an average estimation error of 6.1%
compared to radar speed guns. In the scenario of multiple automobiles, SpeedTalker can achieve an average estimation error of 9.8%,
which is acceptable for usage.

F

1 INTRODUCTION

1.1 Motivation

Nowadays, more and more traffic violations occur due to
the increase of the automobile, e.g., in 2016, the number
of the road traffic deaths reached 1.35 million. Among all
kinds of the traffic violations, speeding is the most deadly
factor[1]. Appropriate reductions in speed can reduce fatal
and serious crash risk to prevent death and serious injury[2].
To reduce speeding, it is essential to devise efficient schemes
for ubiquitous monitoring on traffic. Traditional ways to
monitor the traffic are using speed radar or using cameras.
However, they are costly and inconvenient since they need
wide deployment of special equipment. As a result, a low-
cost and mobile solution to measure the speed is needed.
It is noted that, the mobile phones embedded with many
kinds of sensors, such as cameras and microphones, have
become indispensable in daily life. By utilizing the built-
in sensors, we can propose a method to measure the auto-
mobile speed with mobile phones. Specifically, we can use
the microphones and camera to recover the trajectory of the
automobile and estimate the speed. IMU sensors are utilized
to remove jitters to raise the accuracy of the system. In this
way, every pedestrian can help to monitor the traffic condi-
tion with his/her mobile phone. Furthermore, all people can
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(a) Illustration of the system.

(b) The application of the system.

Fig. 1: Application scenario of SpeedTalker.

participate in the activities of reporting traffic conditions by
sufficiently applying the crowdsourcing method [3].

A typical scenario of SpeedTalker is as follows. In the
speed prone areas, the pedestrians who volunteer to moni-
tor the traffic can arrive at the area in advance and contin-
uously record the acoustic and the visual signals of the au-

Authorized licensed use limited to: Nanjing University. Downloaded on July 06,2021 at 04:35:27 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3034354, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2020 2

tomobiles. The pedestrians only need to use the system for
a few minutes to collect the traffic speed information in this
period. SpeedTalker estimates the speed of the automobiles
and collects the speeding related information. Traffic speed
information will be uploaded onto the server of the related
department. With the help of volunteers, data from different
regions at different time then can be analyzed for traffic
control. The distributions of traffic police and equipment
can be optimized and the drivers and pedestrians can be
warned of danger when moving in this area.

1.2 Limitation of Prior Art
There exist two main approaches to measure the speed of
the automobiles. One approach is to use the fixed devices
to measure the speed of the automobiles. The cameras and
coils are traditional fixed devices for speed detection. They
can monitor whether there exist automobiles at two pre-set
locations. If the automobile passes the two corresponding
locations, the system then records the time interval the
automobile uses. Thus the speed of the automobile can be
easily estimated. However, if the fixed speed measurement
devices are widely deployed to monitor the traffic, the cost
is unacceptable. Besides, the drivers can easily figure out
whether there exist speed measurement devices since their
positions are fixed. Moreover, each speed detection camera
needs its own parameters to estimate the speed of the
automobiles. The height, gesture and the field of view(FOV)
determines the detection region of the camera deployed on
the traffic pole. This makes the estimation simple but can
only work for the specific camera.

Another approach to measure the speed of the automo-
bile is to use portable devices, such as radar speed gun[4]
or lidar[5]. Radar speed guns use Doppler Effect to perform
speed measurement. They send out a radio signal in a nar-
row beam, then receive the same signal back after it bounces
off the target object. If the object is moving, the frequency
of the radio waves change. According to the difference
between the reflected radio waves and transmitted waves,
the speed of the object can be calculated. However, there
exist limitations when using these portable devices. First,
special devices are needed to emit the directional modulated
electromagnetic waves in certain frequency. This increases
the cost of the hardware and prohibits it to be widely
used by ordinary people. Second, the electromagnetic wave
emitted by the equipment can be easily detected by radar
detector in the automobile. Usually this makes them fail
to capture the speeding event, since the automobiles may
intentionally slow down when they pass by.

Therefore, in order to make every pedestrian become
potential speeding inspectors, it is essential to leverage
portable daily devices, such as mobile phone, and propose
easy-to-use measurements to measure the speed of automo-
biles. In fact, by sufficiently using the embedded sensors
like the microphones and cameras, we can effectively use
the mobile phones to measure the automobiles’ speed.

1.3 Our Approach
In this paper, we propose SpeedTalker, a mobile phone-
based approach to perform speed detection on automobiles.
Instead of using special devices, the pedestrian on the

sidewalk can utilize mobile phones’ built-in microphones
and camera to estimate the speed of the automobile. IMU
sensors are utilized to compensate the jitters caused by
users. Figure 1 illustrates the application scenario of the
system. To perform speed detection, the user needs to hold
the mobile phone in landscape orientation as shown in the
figure, i.e., the top microphone and the bottom microphone
are placed in a left-and-right manner. When the automo-
bile passes by, both two microphones record the sound of
the automobiles. And the camera records the movement
of the automobile. According to the measurements from
these two kinds of sensors, SpeedTalker estimates the speed
of the automobiles. Specifically, during the process when
the automobile is passing by, the sound wave reaches the
top and bottom microphones at different time, respectively.
According to the time difference of arrivals (TDOA) derived
from acoustic signals obtained by different microphones,
SpeedTalker estimates the candidate trajectories of the auto-
mobile as a set of hyperbolas. According to the obtained
frames from the camera, SpeedTalker estimates the vertical
distance between the user’s position and the automobile’s
trajectory, by referring to the pin-hole model of the camera.
Then, the trajectory of the automobile can be determined
from the candidates by referring to the unique vertical dis-
tance. Combined with the temporal information in acoustic
signals, SpeedTalker is able to estimate the speed of the
automobiles. Besides, since the mobile phones are held in
hands, the jitters may cause rotation and translation of the
mobile phones. IMU sensors can be used to compensate the
translations and rotations and reduce the errors.

1.4 Challenges

There are three main challenges in our work. The first
challenge is to propose a passive sensing method to mea-
sure the speed of automobile. Passive sensing means the
detection system does not actively transmit any detecting
signals, such as ultrasonic and flash light. Active sensing
has two limitations for the speeding detection. First, the
active signals, e.g., the electromagnetic wave, can be easily
detected by the radar detectors. Second, an ultrasonic wave
or flash light actively generated by the mobile phone will
be dramatically attenuated when it is transmitted outdoors.
To address this challenges, we propose a passive sensing
method to estimate the speed of the automobile, by utilizing
two microphones and one camera in the mobile phones.
Instead of actively transmitting the modulated signals and
receiving the reflected signals, our solution only collects the
acoustic signals and the image frames from the automobiles
in a passive manner. The trajectory of the automobiles can
be estimated by the acoustic signals from the two separated
microphones and the image frames from the camera. Com-
bined with the timestamp of the trajectory, the speed of the
automobiles can be estimated.

The second challenge is to derive the automobile speed
from the complicated acoustic signals. The complication of
the acoustic signals comes from two aspects. On one hand,
the automobile noises are made up of many parts, including
the tire noise, engine noise, exhaust noise, wind noise, etc
[6]. These noises are mixed not only in time domain but
also in frequency domain. Therefore, it is hard to separate
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different noises with two built-in microphones of mobile
phones. On the other hand, there might be many kinds
of noises in the environment, especially for the sound of
other automobiles on the road. It is hard to remove the
environment noises, since the frequencies of other auto-
mobiles mainly lie in very close frequency band with the
target automobile. To address this challenge, we consider
the acoustic signals at full frequency as a whole. We utilize
the cross-correlation of the acoustic signals from the top
and bottom microphones to estimate the time difference of
arrivals (TDOA). As the automobile is continuously moving,
we can obtain a series of time delays through TDOA at
different time. The candidate trajectories of the automobile
can be estimated as a set of hyperbolas according to the
curve of the time delay. Thus the automobile speed can be
further estimated.

The third challenge is to estimate the speed of multiple
automobiles. We can not separate the sound of multiple
automobiles. Therefore, when multiple automobiles pass
through the mobile phone, it is challenging to estimate the
speed. To address the challenge, we utilize the multiple
peaks in the cross-correlation figures between the top and
bottom microphones. Then we may recover the delay curve
of each automobile and calculate the speed of the automo-
biles.

1.5 Contributions
This paper makes four contributions: First, this is the first
work that estimates the automobile speed via mobile phones
through passive sensing of acoustic and image signals. We
propose an integrated solution to effectively estimate the au-
tomobile’s speed based on commercial off-the-shelf(COTS)
devices, and provide a platform for every pedestrian to
help report the speeding event of automobiles. Second, we
use the time difference of arrivals (TDOA) model based on
acoustic signals to figure out the candidate trajectories of
automobile, and use the pin-hole model based on image
frames to figure out the vertical distance, thus to estimate
the unique trajectory. Combined with the timestamp of the
trajectory, the automobile speed can be estimated. Third, we
implemented a system prototype for SpeedTalker and esti-
mated the automobile speed with high accuracy. The system
works in the outdoor environment and effectively mitigates
the ambient environmental interference. Experiment results
show that SpeedTalker can achieve an average estimation
error of 6.1% in the scenario of single automobile. In the
scenario of multiple automobiles, SpeedTalker can achieve
an average estimation error of 9.8%.

2 RELATED WORK

Automobile detection via visual signals: Traditional ap-
proaches utilize cameras to calculate the speed of the au-
tomobiles. Kumar[7] and Czajewski[8] use computer vision
based technologies to detect automobiles. The cameras are
deployed in fixed positions and gestures above the street.
As a result, the detection region is known and fixed. That
means the moving distance of the automobiles can easily
be acquired. Then the speed of the automobiles can be
calculated. However, the scenarios of SpeedTalker is differ-
ent from that of traditional visual approaches. The mobile

phones are at the sidewalk and the positions and gestures
are unknown. So novel approaches utilizing mobile phones
to calculate the speed of the automobiles are needed. To
get the relative position information between automobiles
and mobile phones, we need to use cameras inside the
mobile phones, which is analogous to knowing the posi-
tion and gestures of the cameras in traditional CV based
approaches. Apart from distance calculation, SpeedTalker
utilizes acoustic signals to estimate the candidate trajectory
of the automobiles. There are two advantages of acoustic
signals over the visual signals. Firstly, the detection region
of acoustic signals is broader than that of visual signals.
Common cameras inside the microphones usually have nar-
row field of view(FOV). For example, the wide-angle camera
of Samsung Galaxy Note 8 has 77◦ field of view. If we
utilize the microphones of Samsung Galaxy Note 8 to detect
automobiles, the detection field of view is around 160◦

according to the hyperbola model we propose. Secondly,
compute complexity of acoustic signals processing is much
lower than that of visual signals. If visual signals are utilized
to complete the same work, each frame of the videos should
be processed. The compute complexity of the processing is
unacceptable.

Automobile detection via mobile phones: Automobile
detection is an important research area since undetected
automobiles are likely to endanger human life. Mobile
phones can be utilized to inform the users of the approach-
ing automobiles. There are three approaches to sense the
automobiles with mobile phones. The first approach is to
install applications both on the automobiles and the mobile
phones. Oki Electric Industry Co. Ltd. develops a mobile
phone that notifies the users of the presence of the auto-
mobiles using DSRC[9]. Car-2-X utilizes ad-hoc and cellular
networks to inform the pedestrians of the automobile with
the same method[10]. The second approach is to sense
the moving automobiles via images. Sivaraman proposed a
general active-learning framework for on-road automobiles
recognition and tracking based on videos[11]. Wang pro-
posed WalkSafe, a mobile phone application based on the
back camera to sense the automobiles[12]. The drawback of
these work is that image processing needs huge calculating
resources. And the camera of the mobile phone is needed to
face the road, which makes the detection inconvenient. The
third approach is to utilize acoustic signals to sense the auto-
mobiles. Tsuzuki proposed an automobile sound detection
system for a mobile phone[13]. Takagi introduced a hybrid
and electric vehicles detection system[14], which focused
on switching noise of the electric motor. So they failed
to detect automobiles other than these types. Li proposed
Auto++, a system that detects approaching automobiles for
smart phone users to detect all kinds of automobiles via
overall acoustic signals[15]. However, all these works can
only inform the user of the approach of the automobiles
and can not estimate the speed of the automobile.

Sensing via acoustic signals with mobile phones: Sens-
ing with daily equipment is a popular issue. Sound waves
can easily be transmitted and received by daily equipment,
such as mobile phones and smart watches. Much work
based on sound wave has been published. AAMouse mea-
sures the Doppler Shift of the sound waves transmitted by
a mobile phone to track the phone itself with an accuracy
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(a) Empirical study setup. (b) STFT of acoustic signals when the automobile passes
by.

(c) S-shaped curve.

Fig. 2: Simple analysis on acoustic signals.

of 1.4cm[16]. Wang proposed a device-free gesture tracking
method using acoustic signals[17]. It has a tracking accuracy
of 3.5mm and 4.6mm respectively for 1-D hand movement
and 2-D drawing in the air. ApenaApp, uses chirp signals
to detect the changes in reflected sound that are caused
by human breaths[18]. The system applies FFT over the
acoustic signals to monitor the periodical movements that
have frequency lower than 1Hz. All these works need to
transmit active sound wave to sense objects. However they
do not work if they are applied outdoors in a long distance
with powerful environmental noise. Above all, calculating
the speed of the automobile with a mobile phone in ourdoor
environment is quite challenging.

Distance perception via cameras: Distance perception
is demanded in computer vision technology to optimize
the algorithm and enhance the performance. Traditional
approaches to estimate the distance between the object
and the camera is to use binocular system to calculate the
depth. Hartley gives detailed view geometry in computer
vision for distance calculating[19]. Tram utilizes two cam-
eras mounted in the automobiles to capture LED light and
estimate the distance between vehicles[20]. However, the
approach is not suitable for our scenario. Although some
mobile phones have multiple cameras at the backside, the
cameras have its own roles. Some cameras have wide-angle
lens, some have telephoto lens and some have infrared lens.
They may not work together at the same time. Moreover
some mobile phones only have one camera at the backside.
Some other papers use one camera to estimate the distance.
Diaz-Cabrera utilizes one camera to estimate the distance
between the automobile and the traffic light[21]. They need
to know the height of the traffic light and the parameter
of the cameras in advance. Rahman utilizes one camera to
estimate the distance between the user and the camera[22].
They also need to know the distance between the eyes and
the parameters of the cameras. Our approach uses similar
view geometry to calculate the distance and we can get the
real diameter of the wheel hub through machine learning
approaches.

3 EMPIRICAL STUDY AND MODELING

3.1 Acoustic Signal Study

3.1.1 Measurement of Acoustic Signals via Mobile Phones
In order to study the relations between the acoustic signals
and the speed of the automobile, we need to collect acoustic
signals when automobiles pass by. To avoid the influence of
jitters from the mobile phone, we deploy the mobile phone

on a tripod. As shown in figure 2a, the tripod is set at one
side of the road with its camera facing the road. And the
mobile phone is in the landscape orientation. The mobile
phone is about 1.5m above the ground, and about 8m away
from the lane. The mobile phone records the sound when
the automobile passes by. The sampling rate fs of the sound
in empirical study is 44.1kHz.

3.1.2 Doppler Effect

The usual way to estimate the speed of the moving object
is to utilize Doppler Effect. If we already know the frequency
f of the original wave, the frequency f ′ of real-time wave
should be given by:

f ′ =
C2f

C2 − v2

{
1− v2t√

C2v2t2 + l2(C2 − v2)

}
(1)

where C is the velocity of sound, v is the velocity of the au-
tomobile, l is the closest distance between the mobile phone
and the automobile, and t is the time[14]. The distance
between the mobile phone and the automobile is shortest
at t = 0. To calculate the speed of the automobile, one of the
problems is to find the original frequency f and real-time
frequency f ′ of a specific sound wave.

First we focus on the original frequency f of the moving
automobile. Since active sensing does not work in our sce-
nario, we do not transmit sound wave in specific frequency.
As a result, we have to analyze the sound made by the au-
tomobile to find the original frequency. In fact, automobile
noises include tyre noise, engine noise, wind noise, exhaust
noise, wind noise and so on. The frequency of tyre noise is
widely distributed. The peak part locates between 315Hz
and 1000Hz[23]. The engine noise is dominated by the
rotation speed of the engine. The frequency of the engine
noise is mainly distributed from 1600Hz to 4000Hz and
the peak part concentrates in the range from 100Hz to
400Hz[24]. The frequency of exhaust noise and wind noise
is closely related to the speed of the automobiles. All these
noises vary with the type of the automobiles, tyres, engines
and so on. This means automobile noise does not have
specific frequency and varies with specific automobiles. We
cannot find the original frequency f in our scenario.

Then we focus on the real-time frequency f ′. Figure 2b
shows the short-time Fourier transform(STFT) of the process
when the automobile passes by. We can see that the power
of full-frequency band increases. It is a hard job to focus
on a specific frequency to calculate the speed. That is to
say, we can hardly know the reason for the increase of
the specific frequency power. The increase may be because

Authorized licensed use limited to: Nanjing University. Downloaded on July 06,2021 at 04:35:27 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3034354, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2020 5

A B C D E
Driving Direction

Top Microphone Bottom Microphone
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(b) Signals from micro-
phones at position A.
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(c) Signals from micro-
phones at position B.
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(d) Signals from micro-
phones at position C.
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(e) Signals from micro-
phones at position D.
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(f) Signals from micro-
phones at position E.
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(h) Cross-correlation at po-
sition B.
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(i) Cross-correlation posi-
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(j) Cross-correlation at posi-
tion D.
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(k) Cross-correlation at po-
sition E.

Fig. 3: Empirical study.

of the approaching of the automobile, or the shift of the
original high-power frequency.

To conclude, if Doppler Effect can be utilized to solve the
problem in our scenario, we should find some S-shaped
curves[14] in the spectrogram. The S-shaped curves show
that some specific frequencies shift to the lower frequency
in the spectrogram of the acoustic signals, which can be cal-
culated by equation(1). For example, if we let f = 4000Hz,
l = 10m, v = 20m/s, C = 340m/s, we can get the S-shaped
curve as figure 2c shows. We can not find any S-shaped
curve in the spectrogram of the acoustic signal. That means
Doppler Effect cannot be used to estimate the speed in our
scenario.

3.1.3 Correlation between the Acoustic Signals

Since frequency domain cannot help us estimate the speed
of the automobile, we may look for clues in time domain.
To understand how automobile speed affects the acoustic
signals from automobiles, it is essential to extract spatial and
temporal information from received acoustic signals. Since
we have two audio streams recorded at the same time from
the top and the bottom microphones, we have the chance to
calculate the spatial information.

Figure 3a shows five positions of the automobile’s trace
we choose to study. We record the sound for 0.01s with
both top and bottom microphones at each place. Figure 3b
to figure 3f show the raw signals at position A to position
E. Although the waveforms of the two acoustic signals are
different in detail due to the difference of the microphones,

they are in the similar shape with certain time delays.
To further study the relation between the two signals, we
calculate the cross-correlation[25] between the two signals.
Figure 3g to figure 3k show the cross-correlation between
signals collected by the top and the bottom microphones
at different positions. Signals in figure 3b and figure 3c are
recorded at the top side of the mobile phone. We can see the
signals from top microphone is ahead of the signals from
bottom microphone. From figure 3g and figure 3h we can
see the time delay can be calculated from the value of cross-
correlation between the two signals. Similarly, figure 3e and
figure 3f show the signals when the automobile is at the
bottom side of the mobile phone. Time delays of position D
and position E are -9 and -15.

Since we have the idea that the acoustic signals from the
top microphone and the bottom microphone are temporally
related, we can split the signals into small segments to study
the detailed relationship. This give us the chance to calculate
the speed of the automobile.

3.2 Modeling Automobile Speed via Microphone and
Camera
3.2.1 Build the Coordinate System
We can use three-dimensional coordinate system to describe
the scenario, just as figure 4a shows. The origin is located
at the midpoint of M1M2. M1 and M2 are the points
representing the two microphones. The x-axis is horizontal
and points to the right, the y-axis points towards the outside
of the screen face and the z-axis is vertical and points up.
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(a) 3-D coordinate system of the scenario.

(b) Simplified 2-D coordinate system.

Fig. 4: The model of the scenario.

The coordinate of M1 and M2 is (−l, 0,∆h) and (l, 0,∆h).
2l represents the horizontal distance between the two micro-
phones and 2∆h represents the height difference between
the two microphones when the mobile phone is in landscape
orientation. S (x, y, h) represents the sound source. h of
S (x, y, h) represents the height difference between the x-
y plane and the sound source. Since ∆h � l and h � x or
y, we can simplify the scenario into a 2-D model as shown
in figure 4b which means h and ∆h can be ignored.

3.2.2 Preprocessing of the Acoustic Signals
In this section we split the acoustic signals into small seg-
ments and calculate the cross-correlation of the correspond-
ing segments to get the time delay.

To further study the time delay between the two acoustic
signals, we need to split the signals into segments sorted by
time. The size of the segment needs to be discussed. We will
get one time delay from one pair of corresponding segments.
The more sampling points one segment includes, the more
time one segment will last for. As a result, the fewer segment
pairs and time delays we will get. This will cause two
troubles. First, the automobile will change its position in one
segment. If the size is too large, the automobile will drive
for a long distance. This makes the time delay inaccurate
since the sound source cannot no longer be considered
as a point. Second, if the amount of time delays is too
small, the time delay curve we draw will be coarse-grained.
This influence the estimation precision. However, the fewer
sampling points one segment includes, the more easily the
segment will be influenced by the environment noise. As a
result, we need to choose an appropriate segment size.

In our scenario, we let one segment consist of ns =
fs/100 = 441 samples, which means one segment lasts
for 0.01 second. In this case, the signals from the top and
the bottom microphones are similar enough to calculate the
time delay. Suppose the speed of the automobile is about
50m/s(180km/h), in one segment the automobile moves
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Fig. 5: Cross-correlation of the corresponding segments.

only 0.5 meter, which means we can approximately consider
that the position of the sound source remains unchanged in
one segment.

After the segmentation of the acoustic signals, we get
two sequences of segments S1 = {W11W12 . . .W1n}, S2 =
{W21W22 . . .W2n} from the top and the bottom micro-
phones respectively. The following equations calculate the
cross-correlations Ri and delays ∆di, where i represents the
serial number of the segment pairs:

Ri(n) =
ns∑

m=−ns

W1i(m)W2i(m+ n). (2)

∆di = arg max
t∈N

(Ri(t)). (3)

After we get the result of cross-correlation Ri(n), we may
find the the largest element Ri(t). And the ∆di = t who
makes Ri(n) largest is the time delay of the i-th pair of
segments.

After we get the time delay ∆d between the correspond-
ing segments, we want to know whether ∆d is suitable for
our system. Some points we get from the equation may be
erroneous due to different kinds of noises. The time delays
with little noise, which are suitable for further calculation
should satisfy the the following constraints:

1) The delay ∆d should be less than the maximum
time delay ∆dm determined by the type of the
mobile phone.

2) The correlation of the corresponding segments
should exceed a preset threshold Rs.

The upper bound of the valid delay in constraint 1 is
inferred from triangle inequality. We can see from figure 4b
that the |M1S −M2S| < M1M2, where |M1S −M2S| can
be calculated by the time delay and M1M2 is the distance
between the two microphones. As a result, the value is
mainly determined by the distance between the top and
bottom microphones. Suppose the sampling rate is fs, the
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(a) Time delay curve.
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(b) Smoothed time delay curve.

Fig. 6: Generating Time Delay curve

maximum valid delay ∆dm between the two signals should
be calculated as equation (4):

∆dm =
2lfs
C

, (4)

where 2l is the distance between the two microphones and
C is the speed of sound. For example, we set fs = 44.1KHz
and C = 343m/s, and the distance, without loss of gener-
ality, of Samsung note 8(Experiments in Section 5 are based
on this type of mobile phone.) 2l = 15cm, thus ∆dm is
0.15m×44100s−1

343m/s = 19.2 ≈ 20 samples. We denote the delay
between the segment pair as ∆d. According to triangle
inequality, the valid delay we get from cross-correlation
should be an integer whose absolute value |∆d| is less than
∆dm. That means ∆d should be an integer ranging from
−∆dm to ∆dm, just as figure 5a shows. We define the region
where the time delays vary from ∆dm to −∆dm(or on the
contrary) as Major Detection Region. For example, the Major
Detection Region in figure 5a starts at 2.5s and ends at 5s.

In constraint 2, the thresholdRs has its physical interpre-
tation. It implies that the automobile should be close enough
to the mobile phone, which means the signals from the two
corresponding segments should be similar enough. Cross-
correlation is a measure of similarity of two signals. The
larger the correlation is, the more similar the two signals
will be. If the automobile is far from the mobile phone,
the sound made by the automobile will be too weak to
dominate the signal, which means the signals from the top
and the bottom microphones are not similar enough. In this
case, the cross-correlations of these segments are quite small.
These time delays are not suitable for speed calculation.
The threshold will change with different scenarios. And the
threshold can be determined with constraint 1. Since we
should pay attention to Major Detection Region, we can set
the maximum cross-correlation of the boundary segments
in Major Detection Region as the threshold. In other words,
according to constraint 1, there must exist a process in
which the time delays are around ∆dm. The threshold

(a) Hyperbolas generated by the time delays.
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(b) A simplified model of the asymptotes and the trace.

Fig. 7: Slope Calculating.

can be determined by the correlation of these time delays.
For example, in figure 5b, the threshold can be set as 0.5.
Constraint 2 can help us remove some of the noise appears
in Major Detection Region. Figure 6a draws the time delay
curve with blue points represent the valid time delays and
red points represent the invalid time delays.

3.2.3 Candidate Trajectories Estimation
After we get a series of time delays, we need to recover the
trace of the automobile. We utilize Major Detection Region
to estimate candidate trajectories of the automobile. The
duration of Major Detection Region is less than 3 seconds
in most situations. For example, in figure 6a the duration of
Major Detection Region is 1.5 seconds. Since the duration is
short we can assume that the trace of the automobile is a
line. It is known that in two dimensions, the linear trace can
be represented as:

y = mx+ b, (5)
which means that we need two parameters to determine a
line. The parameter m determines the slope of the line and
the parameter b determines the vertical distance between
the automobile and the mobile phone.

First we try to calculate the parameter m through the
time delays curve. If the time delay between the top and the
bottom microphones is ∆d at time t, the automobile should
locate in the hyperbolas whose foci are M1 (−l, 0) and
M2 (l, 0) and vertices are V1

(
− 1

2∆d , 0
)

and V2

(
1

2∆d , 0
)

at
this moment. The mathematical expression of the hyperbola
is: x2

a2
− y2

b2
= 1, (6)

where a = ∆d
2 and b =

√
l2 − a2.

Figure 7a shows the hyperbolas generated by different
time delays. We can see from the figure that the hyper-
bolas look like a line. The reason is that in our scenario,
x, y � l, where x, y is the coordinate of the automobile in
figure 4b, since l is usually shorter than 10cm and x, y are
usually longer than 5 meters. So we can use asymptote of
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the hyperbola instead using the analytic expression of the
hyperbola[26] to simplify the calculation. The mathematical
expression of the asymptote is:

y =
b

a
x. (7)

a and b in the equation (7) are the same as that in equa-
tion (6). The exact location of the automobile is impossible to
be determined by one single time delay point, but through
the time delay curve, we can get a series of hyperbolas the
automobile should be located in. As a result, we use a series
of time delays in Major Detection Region to estimate the slope
of the trace.

First we can select n time delays with the same time
intervals between the adjacent time delays. For example, we
select n = 7 time delays from t1 to t7 in figure 6b with the
time interval equals 0.25s. To illustrate the estimation in de-
tail, we focus on the three adjacent asymptotes in figure 7b.
We can simplify the mathematical expression of asymptote
t1 as y = k1x where k1 = b1

a1
=
√

4l2−∆d2

∆d . Similarly,
the mathematical expressions of asymptote t2 and t3 are
y = k2x and y = k3x. Combined with equation 5, we can
get the coordinates of intersection points A,B,C between
the asymptotes and the trace t1, t2, t3. The coordinate of A is
( b
k1−m ,

k1b
k1−m ), the coordinate of B is ( b

k2−m ,
k2b
k2−m ) and the

coordinate of C is ( b
k3−m ,

k3b
k3−m ). The distance l1 between A

and B is:

l1 = |AB| = b(k2 − k1)

√
m2 + 1

(k1 −m)(k2 −m)
. (8)

The distance l2 between B and C is :

l2 = |BC| = b(k3 − k2)

√
(m2 + 1)

(k2 −m)(k3 −m)
. (9)

The duration of automobile moving from A to C is short
enough(0.5s). It is reasonable to assume the speed of
the automobile remains stable in this period. That means
l1

t2−t1 = l2
t3−t2 . Then l1

l2
= t2−t1

t3−t2 = 1 and l1
l2

is independent
of the parameter b. That means the parameter b can not be
determined and the parameter m can be calculated.

However, the parameter m should not be calculated
by only three asymptotes. So we use least squares estima-
tion(LSE) to estimate the parameter m. Since the automo-
bile’s speed remains unchanged during the period from t1
to t3 and t2−t1 = t3−t2, the length difference ∆l12 between
l1 and l2 should be minimum. The estimation function of m
is:

E(m) = |l1 − l2|2

= b2
(Am+B)2(m2 + 1)

((k1 −m)(k2 −m)(k3 −m))2
,

(10)

where A = k1 + k3 − 2k2, B = k1k2 + k2k3 − 2k1k3 and
parameter b should be seen as a constant.

After we get the estimation function of m with three
asymptotes, we can modify the estimation function into n
asymptotes to find the fittest m. When we take the n time
delays we select before, the estimation function is:

E(m) =
n−2∑
i=1

|li+1 − li|2. (11)

li can be calculated similarly as equation (8).
The parameterm = arg min

m
E(m). We can let ∂E(m)

∂m = 0

to calculate m.

(a) The pin-hole model of the camera system.

(b) Position estimation.

Fig. 8: Image processing.

3.2.4 Estimating Distance through the Image of the Auto-
mobile

After we use least square estimation(LSE) to calculate the
slope m of the trajectory, we need to calculate the param-
eter b of the mathematical expression of the trajectory. The
parameter b can not be determined by acoustic signals. It is
known that everything looks small in the distance and big
on the contrary. Similarly, the longer the distance between
the object and the camera is, the fewer pixels the object in the
image taken from cameras contains. Therefore, we use the
camera to estimate the distance between the automobile and
the mobile phone. We can continuous record the images of
the automobile, and estimate the vertical distanceL between
the mobile phone and the automobile. In this section, we
will illustrate how to estimate the vertical distance from one
frame of the video. The increase of frame processing will
improve the distance evaluation accuracy and increase the
time consumption of the system.

One camera can be simplified to a pin-hole model. In
figure 8a and figure 7b, L is the vertical distance between
the automobile and the mobile phone. H is the real length
of the object, and h represents the length of the object in
image plane. Since H

h = L+f
f , we can get the distance as

follows:
L = f

(
H

h
− 1

)
≈ f

H

h
, (12)
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(a) Coordinate system of IMU on mobile
phones.

(b) Distance difference between acoustic sig-
nals.

(c) Rotating around x-axis.

Fig. 9: Jitters removing.

where f is the focal length of the camera. f and h are related
to the type of the mobile phones. The most ideal situation
is that the parameters of mainstream mobile phones are
stored in the application. And the approach to calculate
the parameters by the system is not complicated. If we
take a picture of an object Hc meters height and measure
the distance Lc between the object and the camera with a
constant resolution. The distance L can be calculated by the
equation L = Lc

Hhc

Hch
. If resolution of the image remains

unchanged, we can use the number of pixels to replace h,
the length of the object in image plane.

As a result, we can calculate the distance by the image
if we already know the size of some components of the
automobile. Wheel hubs have mature standards and are
easy to be extracted from the picture. So we extract wheel
hubs in the image to estimate the distance. To avoid the
stretch of the wheel hubs caused by rolling shutter effect,
we calculate the diameter of the wheel hub in the vertical
direction. The stretch of the wheel hubs will happen in the
direction of automobiles’ driving direction.

Usually the automobile will not appear in the middle of
the picture. In this situation, the vertical distance L does not
equal the parameter b. Just as shown in the figure 8b, we can
calculate the offset angle φ between the center of the picture
and the automobile with the viewing angle φm and the
resolution of the image. First we can locate the automobile
and get the offset pixels x from the automobile to the centre
of the iamge. Then we can get tanφ = x

f and tanφm = N
f .

The angle φ can be calculated:

φ = arctan(
x tanφm

N
). (13)

φm is determined by the type of the camera.
After we get L and φ, the trajectory of the automobile

can be determined.

3.2.5 Analysis of the Jitters
Although in our scenario the mobile phone needs to be held
still, jitters are unavoidable since the procedure of signals
collection lasts for several seconds. The jitters will change
the coordinate system and increase the speed detection
error. As a result, inertial measurement unit (IMU) is used to
compensate the error. In this part we need to study different
translations and rotations caused by the jitters in our model.
We will analyze the influence of different translations and
rotations of mobile phone.

Figure 9a shows the IMU coordinate system, which is
different from the coordinate system in Section 3.2.1. If the
mobile phone is hold in landscape orientation as shown in
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Fig. 10: Overall analysis.

the figure, the x-axis is verticle and points up, the y-axis
is horizontal and points to the left, and the z-axis points
towards the outside of the front face of the screen. We can
see jitters can be divided into six categories, the rotation
around three axes and the translation along the directions
of three axes. As figure 9b shows, with the translation and
rotation of the mobile phone, the path length difference
∆D = M1A −M2A changes even if the automobile is at
the same position.

In fact, the path length difference ∆D can be calculated
as follows:

∆D =
√

(y + 2l)2 + L2 −
√
y2 + L2, (14)

where y = |AB| represents the displacement between the
automobile and the closer microphone projected onto y-axis,
2l represents the distance between the two microphones and
L represents the closest distance between the automobile
and the mobile phone.

Then, we will evaluate the influence of translation and
rotation. The translation in the direction of x-axis can be ig-
nored. The reason is that we have already ignored the height
difference when modeling the system. And the translation
in the direction of x-axis is much shorter than the height
difference between the mobile phone and the sound source.
As a result, the translation in the direction of x-axis can be
ignored. Similarly, the rotation around the y-axis does not
affect the positions of microphones on y-axis. The rotation
around y-axis can also be ignored.

Figure 10 shows the influences of remaining rotations
and translations. We can take the translation in the direction
of z-axis as example. The translation in the direction of
z-axis influences the distance L we estimate between the
mobile phone and the automobile in figure 9b. The path
length difference ∆D can be modified as:
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Major Detection Region

(a) Case 1.

Major Detection Region

(b) Case 2.

Major Detection Region

(c) Case 3.

Fig. 11: Different cases of multiple automobiles.
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Fig. 12: Multiple peaks analysis.

∆Dz =
√

(y + 2l)2 + (L+ ∆l)2 −
√
y2 + (L+ ∆l)2, (15)

where ∆l represents the translation in the direction of z-axis.
The other rotations and translation can be calculated in the
similar way. From the figure we can see that the influence of
rotation around x-axis is much more than that of others. As
a result, we just need to analyze the rotation around x-axis
to remove the jitters.

3.2.6 Multiple Automobiles Detection
While when multiple automobiles pass by the mobile
phone, the model presented before can only estimate the
speed of part of the automobiles. The problem is caused
by multiple sound sources. When multiple automobiles
pass by the mobile phone, the sound made by different
automobiles interferes with each other. And the sounds of
the automobiles share comparable intensity. The time delays
we calculate from cross-correlation between the top and
bottom microphones cannot always form a complete time
delay curve.

According to the empirical study, it is hard to separate
the specific automobile sounds from microphones of mobile
phones. However, it is possible to decide whose sound
decides dominate the acoustic signals collected by the mi-
crophones. In this section we define the automobile whose
sound dominates the acoustic signals as Major Detection Ob-
ject. Then we classify the scenario of multiple automobiles
into three situations as shown in Figure 11.

We classify the scenarios of multiple automobiles into
three cases as shown in figure 11. Major Detection Region
refers to the areas between the asymptote corresponding to
the time delay ∆dm and −∆dm as shown in figure 11a. The
three cases can be concluded as:

1. Only one automobile is moving in Major Detection
Region.

2. Multiple automobiles become Major Detection Object in
turn.

3. Only one of the automobiles become Major Detection
Object when multiple automobiles go through the Major
Detection Region.

Figure 13a is the time delay curve of 12 automobiles in
the real environment drawn by means of Section 3.2.2. All

three cases appear in the figure. The solutions to the cases
are as follows.

Case 1: Only one automobile is moving in Major Detection
Region. In this case, before one automobile finishes its move-
ment in its major detection region, no other automobile
will enter the major detection region. The automobile in
the major detection region will become the major detection
object. The acoustic signals we collect from the automobile
in this case is similar to the signals from single automobile.
The blue circles in figure 13a form the delay curve of the
corresponding automobiles. The speed of the automobiles
can be estimated through the algorithm we propose. And
according to our experiments, when it is not at the peak
time, this is the most common case for multiple automobiles.

Case 2: Multiple automobiles become Major Detection Object
in turn.

In this case, we should analyze how multiple automo-
biles affect the correlation we calculate through the acoustic
signals. Cross-correlation measures the similarity between
the two signals. The time delay between the two signals
can be calculated with the correlation values. First we can
analyze the mixed signals with different delays. Figure 12a
illustrates the scenario of multiple signal sources and multi-
ple receivers. Figure 12b shows the signal waves of S1 and
S2. Since |S1M1| < |S1M2|, the signals from S1 will arrive
at M1 earlier than arrive at M2. Similarly, the signals from
S2 will arrive at M1 later than arrive at M2. In figure 12c,
the signals R1 received by M1 are the superposition of
sample 181-580 in S1 and sample 51-450 in S2. The signals
R2 received by M2 are the superposition of sample 1-400
in S1 and sample 201-600 in S2. That means the signals
of S1 involved in R1 is 180 samples earlier than in R2

and S2 involved in R1 is 150 samples later than in S2.
The correlation between the received signals is shown in
figure 12d. We have the chance to calculate the time delay
of different sources.

We can take automobile 7 and 8 in figure 13a as example.
The time delay curve of automobile 7 is not complete. The
reason is that automobile 7 and 8 are coming at the same
time. And the sound made by automobile 8 is louder than
that made by automobile 7. Then we may use multiple peaks
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Fig. 13: Processing of acoustic signals of multiple automobiles.

in the correlation figures to recover the time delay curve.
Then we focus on the correlation between the corresponding
segments at time 16.74s. In figure 13a, we have time delay
∆d = 10 around t = 16.4s and time delay ∆d = −5
around t = 16.6s. According to these existing points, we
can estimate the range of the time delay when t = 16.74s.
Figure 13c shows the cross-correlation of the corresponding
segments. Several peaks appear in the figure. We calculate
top three peaks in correlation figure. We can see the second
highest peak is located on time delay -15 and is suitable
for the time delay curve. That means the highest peak at
∆d = 19 is caused by automobile 8 and the second highest
peak at ∆d = −15 is caused by automobile 7. At last
if no time delay satisfy the range, we will abandon the
corresponding segments.

Case 3: Only one of the automobiles becomes Major Detection
Object when multiple automobiles ao through the Major Detection
Region.

The situation is shown in figure 11c. In this case the
line of sight(LOS) path between the automobiles overlap
within the major detection region. That means the delay
curve of these automobiles can not be separated from each
other. The speed of the automobiles cannot be estimated in
this case. In this case, the sound collected by microphones
is too complicated to analyze. As a result, we conduct
experiments on multiple automobiles and the result shows
that if SpeedTalker is not utilized at morning or evening
peak, the detection success rate is about 92%. In figure 13a,
the curve in red of the 11th and 12th automobiles cannot be
distinguished. The two delay curve highly overlap and the
two acoustic signals of the automobiles are severely affected
by each other. Only the speed of the automobile which can
be detected by the cameras can be estimated.

4 SYSTEM DESIGN

4.1 System Overview

The system architecture is shown in figure 14. There are
three main components in SpeedTalker, i.e., Acoustic Sig-
nal Processing, Computer Vision Based Processing and Speed
Extraction. Acoustic Signal Processing first filters the high-
frequency signals. Then signals from the top and the bottom
microphones will be split into small segments sorted by
time. The time delays between the segment pairs can be
calculated through cross-correlation. We modify time delays
to remove the influence caused by the jitters with inner
measurement unit(IMU) in the mobile phone. After that
the time delays form a time delay curve. The time delay

curve can be smoothed with Gaussian smoothing. Computer
Vision Based Processing first extracts the automobile in the
image with yolo[27]. The automobile extracted from the
image will be put into a deep learning network to recognize
the type of the automobile and know the diameter of its
wheel hub in reality. Then we extract the wheel hub through
Hough Transform, get the pixel diameter of the wheel hub
in the image and estimate the vertical distance between the
automobile and the mobile phone. At last, Speed Extraction
recovers the trajectory of the automobile and estimates the
speed of the automobile.

4.2 Acoustic Signal Processing
The acoustic signals we collect usually contain many noises.
We can see from figure 2b that the main energy of the
sound made by the automobile is distributed in the low-
frequency area. To make the time delay calculated through
cross-correlation more accurate, we have let the sound of
automobile dominate the acoustic signal. As a result, we use
a low-pass filter to remove the high-frequency noises. Dif-
ferent types of automobiles have different noise frequency
distribution, but we know that the automobile noise is
mainly distributed in the frequencies below 4 kHz. So we
use a low-pass filter with the cutoff frequency of 4 kHz.

Next, we need to split the acoustic signals into seg-
ments sorted by time. As mentioned before, the size of the
segments we design is fs/100. After getting two series of
audio segments, we calculate the cross-correlation between
the segment pairs to make out the time delay between the
corresponding segments. Then we get a series of time delays
with timestamp, which can be used to draw the time delay
curve. The illustration of the process is shown in figure 15.

At last, we need to smooth the time delay curve. In
Section 3.2.2, we propose two constraints to filter the time
delays. We can divide the whole curve into two parts:
Minor Detection Region and Major Detection Region. Minor
Detection Region refers to the region where the time delay
remains unchanged, with ∆d = ∆dm. The definition of Ma-
jor Detection Region is in Section 3.2.2. When the acoustic
signals is in Minor Detection Region, the automobile is far
away from the mobile phone and the time delay is fixed.
This region is of little importance to the speed estimation.
So we focus on Major Detection Region as shown in the
figure 6a. In Major Detection Region, there exist some in-
valid time delays influenced by environmental noise. There
are two steps to smooth the time delay curve. The first
step is to replace the invalid delay with some reasonable
values. All the time delays with |∆d| > ∆dm should be
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modified to ∆dm or −∆dm. Then, the time delays in Major
Detection Region should not change rapidly. That means
the difference between the adjacent time delays should not
exceed a threshold. We can see from figure 6a that the largest
gradient of the curve is at the time when ∆d = 0. Without
loss of generality, we suppose the vertical distance between
the automobile and the mobile phone L is 5 m, the distance
between the two microphones 2l is 0.2 m. If the difference
between adjacent time delays is 3, the speed of the auto-
mobile is 75 m/s(270 km/h), which is rarely seen in daily
life. As a result, the difference between adjacent time delays
should less than 3 in ideal situations. We relax the threshold
to 5. So we can exclude extremely abnormal time delays
which may influence the traditional smoothing method and
retain other time delays. The value of extremely abnormal
time delays can be modified to that of its neighbors.

The second step is to smooth the sequence with tradi-
tional smoothing methods, e.g., Gaussian smoothing. Then
we will get the smoothed time delay curve as figure 6b
shows.

4.3 Computer Vision Based Processing
After we smooth the delay curve and get the Major Detec-
tion Region, we may get a series of candidate trajectories
with the same slope m. However, the other parameter b
of the trajectory cannot be estimated by acoustic signals.
So we use the image of the automobile to complete the
estimation of the trajectory. From equation 12 we can see
that we need to calculate the pixel diameter h of the wheel
hub and the real diameterH of the wheel hub. The key point
of this section is to extract the wheel hub information in the
image and in reality. Figure 16 shows the process of image
processing, including Automobile Extraction, Automoblie Type
Recognition, Hough Transform and Diameter Estimation.

First we need to extract the automobile in the image.
The image we get from the camera contains too many
objects, which makes it difficult to recognize the type of the
automobile. Besides, too many pixels in the image increase
the complexity of image processing. We just want to pay
attention to the automobile itself. As a result, we utilize
yolo[27], which applies a single neural network to the full
image. The network divides the image into regions and pre-
dicts bounding boxes and probabilities for each region. With
Yolo, we can extract the automobile and get the position of
the automobile in the image. Some empirical approaches
are utilized to solve the problem. The pixel locations of the
car should be a rectangle whose length-width ratio is more
than 2. And the automobile should not be static in different
frames.

The second step is to recognize the type of the auto-
mobile so as to get the type of the wheel hub. Each type
of automobile has its well-matched wheel hub size[28].
If we recognize the type of the automobile, we can get
the real diameter H of the wheel hub. There are several
computer vision tools based on machine learning can recog-
nize the type, such as DeepVision[29], OrpixVision[30] and
BaiduAI[31]. The method using computer vision gives APIs
for our system to recognize the type of the automobile as
figure 16b shows.

After we get the real parameter H of the wheel hub, we
need to calculate the pixel parameter h of the wheel hub
in the image. The shape of the wheel hub is a circle. Due
to the movement of the automobile, the wheel hubs in the
image are not standard circles. However, the movement of
the automobile is in the horizontal direction, which has no
effect on the diameter in the upright direction. As a result,
we focus on the wheel hub in the upright direction. The
method to detect the rough circle is using Hough transform.
Hough transform can be utilized to arbitrary shapes[32].
First we detect the edge of the automobile with Canny edge
detection algorithm[33]. To achieve better performance, we
cut out the lower right corner of the automobile extracted
from the figure since the wheel hub of the automobile are
mostly appear at the bottom of the image. We may find the
wheel hub by Hough transform. The vertical distance L can
be calculated through equation (12).

With yolo we also get the position of the automobile in
the image, with equation (13), the offset angle can also be
calculated.

4.4 Jitters Removing

Since we get the approach of time delay modification in Sec-
tion 3.2.5, the following part of this section is to calculate the
rotation angle around x-axis. We define the moment when
we start to record the sound of the automobile as T0. The co-
ordinate system at T0 is denoted asCT0

. We need to estimate
the speed of the automobile in a stable reference system.
As a result, we transform the time delay ∆d calculated
by cross-correlation in altered coordinate system CTn

into
the time delay ∆d′ in CT0

. We have already analyze how
different translations and rotations will influence the time
delay. The influence of the jitters can be resolved into these
translations and rotations. And we just need to achieve the
rotation around x-axis. We utilize rotation vector in android
system[34] to calculate the rotation. The rotation vector rep-
resents the orientation of the device as a combination of an
angle and an axis, in which the device has rotated through
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an angle θ around an axis < x, y, z >. The three elements
of the rotation vector are < x sin θ

2 , y sin θ
2 , z sin θ

2 >. The
three elements are equal to the last three components of a
unit quaternion < cos θ2 ,−x sin θ

2 ,−y sin θ
2 ,−z sin θ

2 >. ABq
describes the orientation of coordinate system CB relative to
coordinate system CA and [x, y, z] is a vector described in
CA. Since there do not exist rapid rotations in our scenario,
the Euler angle can be approximately seen as the rotations
around the three axes.

4.5 Speed Estimation
In Section 3.2.3, we propose the least square estima-
tion(LSE) to estimate the slope m of the trajectory. The
co-ordinates(L tanφ,L) of the point can be given through
image processing, since L is the distance between the au-
tomobile and the camera and φ is the offset angle from the
mid line of the camera. We can recover the real trajectory of
the automobile. That means we get the spatial information
of the automobile. Moreover, the points on the trajectory
have its own timestamp since the trajectory is calculated by
the time delay curve. We can choose two asymptotes from

TABLE 1: Different parameters of mobile phones.
Type Horizontal Distance 2l Equivalent Focal Length

Samsung S5 0.142 meter 31mm
Iphone 6 0.132 meter 29mm
Honor 7 0.14 meter 28mm

Mi 6 0.145 meter 27mm
Note 8 0.15 meter 26mm

the smoothed delay curve. From the two asymptotes and
the trace we can get the distance the automobile moves at
a period of time so that the speed can be estimated. We
can choose two asymptotes with time delay ∆di and ∆dk
and calculate the slope mi and mk. To reduce the error, we
can make |∆di − ∆dk| as large as possible. After choosing
the asymptotes, we can get the distance between the two
intersection points of the asymptotes and the trace. At last,
the speed of the automobile can be estimated.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup and Methodology
We run SpeedTalker on different types of mobile phones,
including Samsung S5, Iphone 6, HUAWEI Honor 7, Mi 6
and Samsung Note 8. The parameters of different types of
mobile phones are shown in Table 1. The angle of view
can be calculated from equivalent focal length. The user
stands on the side of the road and hold the mobile phone
in the landscape orientation. When the automobile passes
by, the mobile phone continuously collect the acoustic and
visual signals to estimate the speed of the automobile. In
our experiments, the default parameter set is that recording
the sound at 44.1 kHz, the sound is first arrive at bottom
microphone and the direction is 0 degree. Default resolution
of the visual signals is 1280 × 720. Default segmentation
size is 441, which means each segment lasts for 0.01s.
Default FPS is 30 fps, and other camera settings including
shutter time, aperture, ISO condition(the sensitivity to light)
and focusing are automatically determined by the camera
system itself. SpeedTalker is set on these mobile phones with
default settings to evaluate the effectiveness of the system.

Besides the type of mobile phones, we test SpeedTalker
in different usage scenarios with different parameter sets
using Samsung Note 8. There are several parameters in
the experimental setup: 1) Sampling rate: we set the sam-
pling rate when recording the sound of the automobile
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Fig. 17: Preparation of the Experiment.

as 8 kHz, 22.05 kHz, 44.1 kHz and 192 kHz. 2) Resolu-
tion of the image: we set the resolution of the image as
640×480, 1280×720, 1920×1080 and 4032×3024. 3) Direc-
tion: we change the angles between the road and the mobile
phone from -30 degrees to 30 degrees. 4) Automobile type:
we evaluate SpeedTalker on three types of automobiles: cars,
buses and trucks. 5)Light condition: we record the signals
in five different light conditions including dawn, daytime,
dusk, night when it is sunny and daytime when it is rainy.
6)FPS(frame per second) condition: we set the fps conditions
of the videos as 30 fps, 60 fps, 120fps, 240fps. 7)Different
size of the segments: we change the size of the window in
segmentation. The time of duration is 0.005s (221 samples
in one segment), 0.01s, 0.05s, 0.1s. Different sets of signals
may overlap other sets.

At last, we use relative speed error, which first calcu-
lates the speed difference between the estimated speed and
ground truth, and then divede the ground truth, to evaluate
SpeedTalker. The ground truth is collected by the radar
speed gun, BushNell Speedster III as shown in figure 17a.
The error associated with radar speed gun is within 1
MPH(1.6km/h) according to the instruction.

5.2 Speed Estimation with Different Setups
In different parameter settings, experimental results show
that SpeedTalker achieves an average relative error of 6.1%
compared with the groundtruth in the scenario of single au-
tomobile. In the scenario of multiple automobiles, the situa-
tion is much more complicated. We have analyzed different
situations of multiple automobiles in Section 3.2.6. In some
situations multiple automobiles cannot be distinguished by
SpeedTalker. We test SpeedTalker in four different locations
at different time with default parameter setting. The four
locations include arterial traffic with six lanes(three lanes in
each direction), highway with six lanes, road with four lanes
and one-way traffic with one lane. The time includes 8 a.m.
when the traffic is very busy, 2 p.m. when the traffic is not
so busy in the daytime and 10 p.m. when the traffic is not so
busy in the night. Each of the experiments includes about 50
samples. The detection success rate is shown in figure 17c.

First of all, SpeedTalker cannot handle the situation of
morning peak since all the lanes of arterial traffic are full
of automobiles. The acoustic signals are too complicated for
analysis. We will further discuss this situation in Discussion
Section. Luckily in this situation, speeding detection is not
necessary since the automobiles cannot move fast. If we
exclude this situation and one-way traffic with one lane,
the detection success rate is around 92%. Among the auto-
mobiles can be distinguished from each other, the average
relative error is 9.8%.

We present the distribution of the speed groundtruth in
figure 17b. The speed of the automobiles we collect approx-
imately obeys Gaussian distribution whose average speed
is about 60 km/h. We ignore the automobiles whose speeds
are less than 40 km/h(usually meet speed requirement) or
more than 80 km/h(lack of experiment data). The signals
we collect are sound enough to evaluate SpeedTalker.

5.3 Performance in Different Speed Conditions
Figure 18a and figure 18b show the absolute and relative
speed errors of 10 speed intervals. The interval labeled by
40 means the speed of autmobiles in this section is between
40 km/h and 45 km/h.

In the scenario of single automobile, the value of abso-
lute speed errors does not have the trend to increase where
the speed of the automobiles is below 60 km/h. Then the
absolute speed errors begin to increase with the increase
of the automobiles’ speed. The automobiles’ moving dis-
tance in the duration of one segment increases with the
increase of automobile speed, which may brings errors to
the cross-correlation between the segment pairs. This makes
the absolute speed errors increase. When the speed of the
automobiles is below 60 km/h, the absolute speed error
does not increase rapidly with the increase of speed. The
reason for that is the sound made by the automobiles are
tightly related with the speed of the automobiles. When
the speed of the automobiles is not fast, the amplitude of
the acoustic signals may influence the absolute speed error.
However, the relative speed errors shown in figure 18b
differ from absolute speed errors. Since groundtruth also
increases, the relative speed errors are acceptable if the
speed of automobiles is high.

Then we present the CDF figure of the relative speed
error in figure 18c. The average error based on the experi-
ments is 6.1%. According to the results, more than 80% of
our measurements have an accuracy of 90.2%. SpeedTalker
can achieve good accuracy in estimating the speed.

In the scenario of multiple automobiles, we find that
the performance of SpeedTalker is worse than that of single
automobile. With the increase of the speed, the differences
of performances are tending to decrease. The reason is that
we need to apply multiple peak model to recover the delay
curve of each automobile. The recovered delay curve cannot
achieve the same accuracy as the original delay curve.
However, the automobiles with higher speed will make
louder sound, which will become major detection object for
longer time. As a result, the estimated speed in multiple
automobiles scenario is close to that in single automobile.
The average relative speed error in this scenario is 9.8%. We
can see that SpeedTalker can achieve high accuracy in daily
use.
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Fig. 18: Evaluate the accuracy of speed with different speed conditions.

5.4 Performance in Different Parameter Conditions

Next we change the parameters in the experiment setup,
i.e., sampling rate, resolution, direction, orientation, FPS
conditions and the size of the segments. In figure 19a we can
see that in both single automobile and multiple automobiles
scenarios, the higher the sampling rate is, the smaller the
average relative speed error will be. The reason is that the
lower the sampling rate is, the fewer sample points one seg-
ment will contain. As a result, the time delay calculated from
cross-correlation may be inaccurate, which makes the esti-
mation of automobiles’ speed inaccurate. However, even
if the sampling rate equals 8 kHz, we can still achieve an
average relative speed error of 85.3% in single automobile
scenario and 75.1% in multiple automobiles scenario.

In figure 19b we can see the higher the resolution of
the image is, the smaller the average relative speed error
will be. The resolution of the image influences the precision
of the distance estimation. If we enhance the resolution of
the image, the pixel height of the wheel hub will be more
precise. This will enhance the performance of SpeedTalker.
In figure 19c we can see that the fps condition does not
apparently influence the performance of SpeedTalker. Ac-
tually the automobile information collected by the visual
signals is influenced by resolution and exposure time of the
camera in our model. If the exposure time is too long, the
figure of the automobile will be blurred, which will make
the estimation inaccurate. The shutter time is the direct
factor of the clarity of the frames instead of FPS conditions.
We evaluate performance with different shutter time. The
results are shown in figure 19d. Different shutter time does
not influence the performance dramatically, either. In digital
cameras, the exposure time is shorter than the electronic
shutter time. Even if the electronic shutter time is 1/30 s, the
exposure time is usually less than 1/60 s. The movement
of the automobiles will not influence the quality of the
figures severely. In figure19e, we can see that in the scenario
of single automobile, the performances of SpeedTalker are
almost the same. If one segment lasts for 0.05s, the system
has the best performance. However, when it comes to mul-
tiple automobiles, the methods whose segments lasting for
0.05s and 0.01s have better performance. The reason is that
when multiple automobiles pass by, the delay curve of the
automobiles may not be complete. If the one segment have
too many samples, the less time delay points we have. Then
the time delay curve we recover may have more errors.

Figure 19f shows SpeedTalker achieve good performance

in different orientations. If we rotate the mobile phone, the
relative speed error will increase. But due to our trajec-
tory estimation model, SpeedTalker still performs well. To
conclude, if we enhance the resolution of the images and
sampling rate of the audio, SpeedTalker performs better.

5.5 Performance in Different External Conditions

The external conditions may influence the accuracy of
SpeedTalker. And SpeedTalker works in real outdoor en-
vironment, the conditions can not be easily controlled. We
choose three typical external factors to analyze the impact.
First we can see that trucks achieve the best performance
while buses perform worst among the three types of au-
tomobiles in both scenarios. The reason is that the trucks
make the biggest noise, which can dominate the acoustic
signals. The noise of buses includes the noise of hydraulic
machines, the noise of wobbling and so on, which is much
more complicated than the cars. Together with bigger size,
the sound source of buses is wider than cars. And buses
move at medium speed, usually no more than 50 km/h.
With the same absolute speed errors, the relative speed
error will be larger than that of cars. Another interesting
phenomenon is that SpeedTalker works better on trucks
in multiple automobile scenarios since the acoustic signals
made by the trucks is loud enough to make the trucks major
detection objects. In cases of cars and buses, the performance
of SpeedTalker get worse, especially there exist trucks at the
same time.

The light condition influences the visual signals we
collect. However, it is unlikely to control the light condition
outdoors beside the streets. As a result, we choose four
typical time, including dawn, daytime, dusk and night(with
street lamps) in a day when it is sunny to change the
light condition. Besides we also evaluate SpeedTalker in
rainy days. Figure 20b shows SpeedTalker performs better
in daytime when the light is sufficient in both scenarios.
The images we take at dawn, dusk or night are more blurry
than that in daytime, which makes the estimation error of
distance increase. Although we cannot achieve the same
performance as in sunny weather in the daytime, we can
utilize SpeedTalker to estimate automobiles’ speed in the
condition that the wheel hub of the automobiles can be
recorded either. If the street lamps are too dark to recognize
the wheel, SpeedTalker will not work.

Figure 20c shows the performance of SpeedTalker on dif-
ferent types of mobile phones. We can see from Table 1 that
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Fig. 19: Evaluate the accuracy of speed with different parameters.

different types of mobile phones have different size. That
means the horizontal distance 2l and angle of view will vary
with different mobile phones. We change the corresponding
parameters in our model, and conduct experiments on them.
We can see from the figure that different types of mobile
phones have similar performance. The mobile phone with
longer length have tiny advantage over that with shorter
length.

5.6 Cost Evaluation of SpeedTalker

To evaluate the cost of SpeedTalker, we run the system
with the default parameter settings. The acoustic signals
processing and computer vision based processing can work
on concurrent threads since they are not dependent on each
other. However, the process of speed estimation needs the
results of both acoustic signals processing and computer vi-
sion based processing. Acoustic signals processing perform
low-pass filtering, cross-correlation calculating, and smooth-
ing, which takes a very short time. Computer vision based
processing contains two AI networks and circle detection.
First yolo is run to line out the automobiles and the system
can get the outline coordinate. After that the extracted auto-
mobiles can be upload to another machine learning network
(we use Baidu AI here) to get the automobile information.
The extracted automobile pictures are upload to the ML
network on the server and the results are sent to our system.
Hough transform is performed to recognize the wheel hub
at the same time. Hough transform does not take a long
time since the input images are the extracted automobiles.
As a result, the bottleneck of SpeedTalker is utilizing ML
network. Table 2 shows the detailed information of time
consumption of SpeedTalker. Computer vision based pro-
cessing are performed on one frame(not all the frames need
to processed, one frame per second is sufficient for speed
detection). The energy consumption of the system is also
shown in the Table. We can see from the table that time

consumption of different mobile phones is acceptable for
practical usage.

6 DISCUSSIONS

6.1 Limitation of Our Work

Though SpeedTalker can achieve accurate speed estimation
with mobile phones, there exist several limitations in real
environments.

First, SpeedTalker does not work in several situations.
a) If the automobile is turning a corner, the system cannot
work properly. This is because the estimation on candidate
trajectories are based on the assumption that the trajectory
of the automobile is a line. Meanwhile, the mobile phones
nowadays are equipped with more than two microphones,
which may give us chances to improve the system. Without
more sensors to help sense the automobile, it is difficult to
deal with the crooked trajectories. b) If the automobiles are
coming from multiple direction, the system cannot work.
This situation can be avoided since automobiles coming
from all directions is quite a dangerous scenario for the
users. c) If the automobile cannot be detected by the camera,
the system cannot work. This situation may happen if the
system is used in the evening and there exists no street lamp
around the users or the detection object is blocked by the
barriers. d) As shown in Section 5 Performance Evaluation,
SpeedTalker cannot work when using at morning or evening
peak. In fact in this situation, due to the traffic jam, the speed
of the automobiles cannot be very fast.

Second, based on our model, we need to know the
parameters,i.e., the distance between the top and the bottom
distance and the view angle of the camera, of the mobile
phone which is running SpeedTalker. Moreover, the speed
of sound varies with geographical factors, such as eleva-
tion, humidity and so on. That means SpeedTalker needs
to be adapted to all types of mobile phones with unique
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Fig. 20: Evaluate the accuracy of speed with different environmental conditions.
Type Acoustic Processing(ms) YOLO(ms) Hough Transform(ms) Baidu AI(s) Energy Consumption per min(%)

Samsung S5 105 210 46 0.8 0.7
Iphone 6 98 190 45 0.8 0.9
Honor 7 113 224 66 0.8 0.6

Mi 6 96 178 45 0.8 0.7
Note 8 88 152 40 0.8 0.5

TABLE 2: Different parameters of mobile phones.

parameter. Also, we need to take geographical factors into
consideration. To handle these two limitations, we need pre-
knowledge of the mobile phones and geographical position.
SpeedTalker can work with more sensors, such as GPS to
improve the performance.

6.2 Improvements and Future Work

a) Utilizing advanced cameras: More and more mobile
phones have multiple cameras at the back side. Some cam-
eras even have specific sensors to calculate the depth of
scenes. Besides, two cameras of the same type can esti-
mate the depth with computer vision based approaches.
However, these approaches have their limitations. First, the
depth sensors have its own detection region. It will not
detect the objects far from the sensors. For example, Kinect
can only sense the depth of human body within 3 meters.
Second, most depth sensors cannot detect the objects with
high speed. Third cameras on the on the mobile phones
are normally not the same type, which may not suitable
for depth calculating. As a result, the depth sensors cannot
work properly in our scenarios.
b) Future work: We have conducted experiments on several
environmental parameters, such as light condition, sunny
or rainy days. However, there exist much more situation
that may influence the performance of SpeedTalker. For ex-
ample, wind and insects may influence the acoustic signals
we collect and dusty or foggy weather will influence the
cameras. However, it is a hard job for us to control or
quantize environmental parameters in a short time. We will
conduct experiments on different environmental parameters
to further study the characters of acoustic and visual signals
influenced by outdoor environments.

7 CONCLUSION

In this paper, we propose SpeedTalker that leverages mobile
phones to estimate the speed of the automobiles. The users
just need to stand by the side of the road, hold the mobile
phone in landscape orientation and run the application
to collect acoustic and image signals. The speed of the
automobile can be estimated. We use the time difference of

arrivals(TDOA) model based on acoustic signals to estimate
the candidate trajectories of the automobile. The images
we take from cameras help us determine the trajectory
of the automobile. Combined with the timestamp on the
trajectory we can estimate the speed. An inner measurement
unit(IMU) based jitters removing method is proposed to
improve the performance. In our experiment, we measure
the speed of automobiles with an average estimation error
of 6.1% in the scenario of single automobile and 9.8% in the
scenario of multiple automobiles compared to radar speed
guns. Our approach demonstrates a portable and low-cost
solution to provide accurate speed monitoring via mobile
phones.
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