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ABSTRACT
Audio-Visual Event Localization (AVEL) aims to locate events that
are both visible and audible in a video. Existing AVEL methods
primarily focus on learning generic localization patterns that are
applicable to all events. However, events often exhibit modality
biases, such as visual-dominated, audio-dominated, or modality-
balanced, which can lead to different localization preferences. These
preferences may be overlooked by existing methods, resulting in
unsatisfactory localization performance. To address this issue, this
paper proposes a novel event-aware localization paradigm, which
first identifies the event category and then leverages localization
preferences specific to that event for improved event localization.
To achieve this, we introduce a memory-assisted metric learning
framework, which utilizes historic segments as anchors to adjust
the unified representation space for both event classification and
event localization. To provide sufficient information for this metric
learning, we design a spatial-temporal audio-visual fusion encoder
to capture the spatial and temporal interaction between audio and
visual modalities. Extensive experiments on the public AVE dataset
in both fully-supervised and weakly-supervised settings demon-
strate the effectiveness of our approach. Code will be released at
https://github.com/ShipingGe/AVEL.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding; Scene understanding.
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1 INTRODUCTION
Audio-Visual Event Localization (AVEL) is a challenging task that
has received growing attention in recent years [22]. Its objective is
to identify the category of events in a video while simultaneously
locating the video segment where the event occurs to be both
audible and visible.

Existing AVEL approaches primarily consist of two mainstream
paradigms: single-branch paradigm [19, 22, 32, 34], and double-
branch paradigm [27–29, 31]. Among them, as shown in Figure 1(a-
b), the single-branch paradigm considers the problem as an (N+1)
classification problem at the segment level, including N event
classes and one background class. The double-branch paradigm
decomposes the problem into an N-class event classification prob-
lem at the video level, and a two-class event localization problem at
the segment level. Despite the effectiveness of these two paradigms,
they both set a general background class for event localization,
aiming to learn generic localization patterns that are applicable to
all events. However, they are prone to overlooking the localization
preferences specific to different events.

Actually, different types of events often have their own special
event localization preferences due to the modality bias of the event.
As shown in Figure 1(d-f), for some events, the visual aspect is rel-
atively more important, such as “airplane” events where the noise
is constant throughout and it is difficult to extract localization in-
formation from audio, and the visual aspect often dominates the
localization. For some events, the audio aspect is relatively more
important, such as “man speaking” events where there is less visual
variation and it is difficult to extract localization information from
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Figure 1: Illustration of three AVEL paradigms (a-c) and three
types of events with different localization preferences (d-f).

the visual aspect, and the audio aspect often dominates the localiza-
tion. There are also events where the visual and audio aspects are
balanced, such as “car racing” events where both modalities provide
relatively clear localization information and it is easier to make
comprehensive decisions using both modalities. Capturing these
event-specific localization preferences may help enhance event
localization performance.

To address this issue, we propose a novel event-aware double-
branch localization paradigm, which first identifies the event cat-
egory of the video and then utilizes the localization preferences
specific to that category to perform segment-level event localization,
as shown in Figure 1(c). Compared to the previous two paradigms,
this event localization paradigm can more fully exploit the local-
ization patterns possessed by videos with the same event category,
thus achieving better localization performance.

To achieve this, we propose a memory-assisted metric learning
framework that can store segments with high event-relatedness
and high audio-visual synchronization in the memory during the
training process for each event category, and then use these seg-
ments as anchors to adjust the distribution of the representation
space. In particular, we learn a unified representation space that can
simultaneously perform event classification and event localization,
which not only benefits both tasks with each other but also avoids
the inconsistencies that may arise from learning separate models
for the two tasks.

Although the above metric learning framework is not designed
specifically for any particular model structure, it places high de-
mands on the ability of the model to extract multimodal representa-
tions. It requires the extracted segment representations to capture
some subtle changes, such as the temporal-spatial variations in
the visual modality and the temporal variations in the presence of

noisy audio. To this end, we propose a spatial-temporal audio-visual
fusion encoder to capture the spatial-temporal interaction between
visual and audio modalities.

The contributions of this paper are as follows:
• We propose a new event-aware double-branch localization para-
digm to utilize event preferences for more accurate localization.

• We propose a spatial-temporal audio-visual fusion encoder and
a memory-assisted metric learning framework to better extract
features and capture event-specific localization preferences.

• Extensive experiments on the public AVE dataset in both fully-
supervised and weakly-supervised settings demonstrate the ef-
fectiveness of our approach.

2 RELATEDWORK
2.1 Audio-Visual Event Localization
Audio-Visual Event Localization (AVEL) is a significant task with a
diverse range of applications, such as video surveillance, human-
robot interaction, and multimedia content analysis [22]. Existing
methods primarily focus on designing effective model architectures
that can extract cross-modal relations between audio and visual
features, utilizing co-attention fusion [19, 22, 26–28, 31, 34] or trans-
former fusion [13, 17, 29, 32]. In terms of co-attention fusion, Tian
et al. [22] first introduce the AVEL problem and collect an Audio-
Visual Event (AVE) dataset, which has become the standard bench-
mark for evaluating AVEL methods. Wu et al. [27] propose a Dual
Attention Matching (DAM) module to cover a longer video dura-
tion for better high-level event information modeling. Ramaswamy
[19] propose a novel Audio-Visual Interacting Network (AVIN) that
enables inter as well as intra-modality interactions. Yu et al. [31]
propose a Multimodal Parallel Network (MPN) to perceive global
semantics and unmixed local information parallelly. Zhou et al. [34]
propose a Positive Sample Propagation (PSP) module to discover
and exploit the closely related audio-visual pairs. Xia and Zhao [28]
proposes a novel Cross-Modal Background Suppression (CMMS)
network to improve localization performance by suppressing asyn-
chronous audio-visual background frames. Wu et al. [26] propose a
span-based framework that considers consecutive segments jointly.
As for transformer fusion, Lin and Wang [13] propose an Audio-
Visual Transformer (AVT) to exploit intra and inter-frame visual
information and perform co-attention over different modalities. Xu
et al. [29] propose a Cross-Modal Relation-Aware Network (CM-
RAN)which contains an audio-guided attentionmodule to guide the
model to focus on event-relevant visual regions. Yu et al. [32] pro-
pose aMulti-Modal Pyramid Attentional Network (MM-Pyramid) to
capture temporal pyramid features and integrate pyramid features
interactively with an adaptive semantic fusion module. Mahmud
and Marculescu [17] integrate the AudioCLIP model [5] pre-trained
on large-scale audio-visual data to effectively operate on different
temporal scales of video frames.

2.2 Memory Networks
Memory networks are a class of learning models [25] that con-
struct an external memory bank module to store potentially useful
features for future use [8]. Pioneering work using memory net-
works has shown great potential in NLP and CV tasks [1]. Zeng
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Figure 2: The illustration of spatial-temporal audio-visual fusion encoder and the event-aware double branches.

et al. [33] propose topic memory networks for short text classifica-
tion with a novel topic memory mechanism to encode latent topic
representations indicative of class labels. Liu et al. [14] propose a
memory-guided semantic learning network to record the shared se-
mantic features in the temporal sentence grounding task. Kim et al.
[9] propose a novel memory-guided domain generalization method
for semantic segmentation by learning how to memorize domain-
agnostic and distinct information of classes. Ji and Yao [8] design a
memory module to memorize the blurry-sharp feature pairs in the
memory bank, thus providing useful information for video deblur-
ring. Recently, some researchers have applied memory networks to
multi-modal learning problems. Liu et al. [15] propose a Memory-
Augmented Unidirectional Metric Learning Method to enhance the
cross-modality association by storing the modality-specific proxies
into memory banks to increase the reference diversity. Chen et al.
[2] propose a cross-modal memory network to enhance the encoder-
decoder framework for radiology report generation, where shared
memory is designed to record the alignment between images and
texts. Li and Moens [12] propose a memory-enhanced graph net-
work that performs explicit and implicit reasoning over a key-value
knowledge memory module for visual question answering.

3 METHODOLOGY
3.1 Task Definition
We first introduce notations and formalize the Audio-Visual Event
Localization (AVEL) task. For the AVEL task, each video 𝑉 is split
into 𝑇 non-overlapping segments 𝑆 , i.e., 𝑉 = {𝑆𝑡 }𝑇𝑡=1 and 𝑆𝑡 =

(𝑣𝑡 , 𝑎𝑡 ), where 𝑣𝑡 and 𝑎𝑡 are the visual and audio feature of the
segment 𝑆𝑡 , respectively. Let 𝑌 = {{𝑦𝑛𝑡 |𝑦𝑛𝑡 ∈ {0, 1}}𝑁+1

𝑛=1 ,
∑𝑁+1
𝑛=1 𝑦𝑛𝑡 =

1}𝑇
𝑡=1 represent the event label for video 𝑉 . Here, 𝑁 + 1 denotes

the number of event categories, including a background category
indicating independently audible (or visible) events or the absence
of an event [20, 22]. Since one video usually contains only one event,
the event labels𝑦 can be further decomposed into two sub-labels: (1)
video-level event category label 𝑦𝑒 ∈ {1, . . . , 𝑁 }, (2) segment-level
event relevance label 𝑦𝑟 = {𝑦𝑟𝑡 |𝑦𝑟𝑡 ∈ {0, 1}}𝑇

𝑡=1.

We consider two settings of the AVEL task: 1) Fully-supervised
AVEL setting, in which the event label 𝑦𝑡 of each video segment 𝑆𝑡
is given during training. 2) Weakly-supervised AVEL setting, in
which only the video-level event category label 𝑦𝑒 for the whole
video𝑉 is given during training. The goal of AVEL is to predict the
event label 𝑌𝑡 for each video segment 𝑆𝑡 in both fully-supervised
and weakly-supervised AVEL settings.

3.2 Overview
To address the AVEL task, we propose a model structured with
a spatial-temporal audio-visual fusion encoder for representation
and a novel Event-Aware Double Branches (EADB) for inference,
as shown in Figure 2. Moreover, to effectively learn event-specific
localization preferences, we develop a Memory-Assisted Metric
Learning (MAML) framework. Specifically, the model takes a se-
quence of video segments as inputs and extracts features for further
event localization by both spatial and temporal audio-visual feature
fusion operations. These features are finally sent to the EADB for
both event classification and localization. The MAML framework
is designed based on the memory bank mechanism, which allows
us to store segments with high event-relatedness and high audio-
visual synchronization in the memory for each event category.
These stored segments can then be used as anchors to adjust the
distribution of the representation space based on metric learning.

3.3 Spatial-Temporal Audio-Visual Fusion
Encoder

As shown in Figure 2, we begin by feeding the raw visual feature
maps and raw audio features into the base visual encoder 𝐸𝑣

𝑏
and

the base audio encoder 𝐸𝑎
𝑏
, respectively, to obtain the visual fea-

ture maps 𝐹 𝑣 = {𝑓 𝑣1 , . . . , 𝑓
𝑣
𝑇
} ∈ R𝑇×ℎ×𝑤×𝑑𝑣 and the audio feature

𝐹𝑎 = {𝑓 𝑎1 , . . . , 𝑓
𝑎
𝑇
} ∈ R𝑇×𝑑𝑎 . Here, 𝑇 is the number of segments,

𝑑𝑣 represents the number of channels of the visual feature, 𝑑𝑎 rep-
resents the number of channels of the audio feature, and ℎ and𝑤
denote the height and width of the visual feature map, respectively.
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Figure 3: The illustration of our proposed memory-assisted metric learning framework.

3.3.1 Spatial Audio-Visual Feature Fusion. In this module, we
first flatten each visual feature map 𝑓 𝑣

𝑖
∈ Rℎ×𝑤×𝑑 into a sequential

representation 𝑓 𝑣
𝑖
∈ Rℎ𝑤×𝑑 , which is then input into a transformer

encoder 𝐸𝑣𝑠 to obtain the spatial context-aware visual feature 𝑓 𝑣𝑠 .
Subsequently, we feed each audio feature 𝑓 𝑎

𝑖
∈ 𝐹𝑎 and the corre-

sponding 𝑓 𝑣
𝑠𝑖
into a transformer decoder 𝐷𝑠 , producing the spatially

fused feature 𝑓 𝑎𝑣
𝑠𝑖

. We represent the entire sequence of spatially
fused features as 𝐹𝑎𝑣𝑠 = {𝑓 𝑎𝑣

𝑠1 , . . . , 𝑓 𝑎𝑣
𝑠𝑇

}.

3.3.2 Temporal Audio-Visual Feature Fusion. In this module,
we begin by inputting the audio feature 𝐹𝑎 into a transformer
encoder 𝐸𝑎𝑡 , resulting in the temporal context-aware audio feature
𝐹𝑎𝑡 ∈ R𝑇×𝑑 . Next, we compute the mean of each spatial context-
aware visual feature map 𝑓 𝑣

𝑖
∈ Rℎ𝑤×𝑑 to obtain the visual feature

𝑓 𝑣
𝑖

∈ R𝑑 . The set of all visual features is represented as 𝐹 𝑣 =

{𝑓 𝑣1 , . . . , 𝑓
𝑣
𝑇
} ∈ R𝑇×𝑑 . We then input 𝐹 𝑣 into a transformer encoder

𝐸𝑣𝑡 to obtain the temporal context-aware video feature 𝐹 𝑣𝑡 ∈ R𝑇×𝑑 .
Finally, we input 𝐹𝑎𝑡 and 𝐹 𝑣𝑡 into a transformer decoder𝐷𝑡 , resulting
in the temporal fused features 𝐹𝑎𝑣𝑡 = {𝑓 𝑎𝑣

𝑡1 , . . . , 𝑓 𝑎𝑣
𝑡𝑇

}.

3.3.3 Final Fusion. In the final step, we concatenate the spatial
and temporal features of each segment and feed them into a convo-
lutional network to obtain the final fused features, denoted by 𝐹𝑎𝑣 .
Specifically, we apply a 1D convolution operation with a ReLU acti-
vation function to the concatenation of each pair of corresponding
spatial and temporal features:

𝐹𝑎𝑣 = Conv(Concat[𝑓 𝑎𝑣𝑠1 , 𝑓 𝑎𝑣𝑡1 ], . . . ,Concat[𝑓 𝑎𝑣𝑠𝑇 , . . . , 𝑓 𝑎𝑣𝑡𝑇 ]), (1)

where Conv represents the convolutional network.

3.4 Memory-Assisted Metric Learning
To construct a meaningful embedding space for the audio-visual
segment features, we maintain a feature bank 𝑩 during training that
stores the high event-related audio-visual features across different
videos. We then utilize the features in 𝑩 to generate prototypes of
different events for event classification and constrain the relation
between different segments of the same event for event localization.

3.4.1 Feature Consistency of Memory Bank. As pointed out in
[6], memory bank mechanisms may encounter inconsistency issues
between the rapidly changing encoder-generated features and the
stored features in the bank, which were generated by the previous
encoder during training. To overcome this issue, we adopt a strategy
where we do not directly store the fused audio-visual feature in
the bank. Instead, we store the corresponding raw audio and visual
data into the raw data bank, as shown in Figure 3. We then extract
fused features from these raw data using the spatial-temporal audio-
visual fusion encoder and learn the embedding space using the fused
features. This way, we ensure that the features in the bank are
consistent with the encoder-generated features, thereby enhancing
the effectiveness of the memory bank mechanism.

3.4.2 Bank Update Strategy. To make the Audio-Visual Feature
Bank store high event-related audio-visual features while main-
taining efficiency, we design a bank update strategy based on the
Jensen-Shannon Divergence (JSD) between audio and visual fea-
tures, and the bank is updated during every training batch according
to the bank update strategy. Specifically, given the intermediate
audio feature 𝐹𝑎𝑡 and visual feature 𝐹 𝑣𝑡 , we use two linear layers
with the softmax function performed at each segment to generate
the uni-modal event category prediction distributions 𝑢𝑎 ∈ R𝑇×𝑁

and 𝑢𝑣 ∈ R𝑇×𝑁 , respectively. Then, we define a uni-modal event
classification loss to optimize the linear layers:

L𝑢𝑚𝑐 = − 1
𝑇

𝑇∑︁
𝑖=1

𝑦𝑟𝑖 (log𝑢𝑎𝑖,𝑦𝑒 + log𝑢𝑣𝑖,𝑦𝑒 ) . (2)

Next, we measure the relationship between the audio and visual
features of the segment using the relation score based on the JSD
and the event relevance labels. For the fully-supervised setting, we
define the relation score as:

𝑠𝑖 = 1 − JSD(𝑢𝑎𝑖 , 𝑢
𝑣
𝑖 ) + 𝑦

𝑟
𝑖 . (3)

For the weakly-supervised setting where the event relevance labels
are not available, we simply define the relation score as:

𝑠𝑖 = 1 − JSD(𝑢𝑎𝑖 , 𝑢
𝑣
𝑖 ) . (4)
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Figure 4: The illustration of our proposed Event Prototypes
Alignments and Event-Aware Localization Alignment.

We assume that the audio-visual segments with higher relation
scores are more likely to contain the same event. Thus, for each
upcoming segment, we compare its relation score with the relation
scores of all segments in the raw data bank that share the same
event category. If the segment’s relation score is higher than the
relation score of any segment in the bank, we remove the segment
with the lowest relation score and input the new one. In this way,
the raw data bank can store and update representative audio-visual
feature pairs for each event category during training.

3.4.3 Event Prototypes Alignment. After the audio-visual fea-
ture bank is obtained, we propose to use the features in the bank as
the event prototypes to learn the embedding space for audio-visual
features. The motivation behind this approach is that prototypes
can capture the high-level representation of the events and provide
better discriminative feature representations for the construction
of the embedding space. Specifically, we define the prototype 𝑐𝑛
of event 𝑛 as the mean vector of the corresponding event features
{𝐵𝑛1 , . . . , 𝐵

𝑛
𝐿
} in the feature bank 𝑩:

𝑐𝑛 =
1
𝐿

𝐿∑︁
𝑞=1

𝐵𝑛𝑞 , (5)

where 𝐿 is the number of audio-visual features of event 𝑛 in the
feature bank. Then, for each audio-visual feature 𝑓𝑖 ∈ 𝐹 , we compute
the distribution 𝑝 over the classes based on the Euclidean distance
between the feature and the prototypes in the embedding space:

𝑝 (𝑦𝑒 = 𝑛 |𝑓𝑖 ) =
exp (−dist(𝑓𝑖 , 𝑐𝑛)/𝜏)∑𝑁
𝑗=1 exp (−dist(𝑓𝑖 , 𝑐 𝑗 )/𝜏)

, (6)

where dist(·) measures the Euclidean distance between two vari-
ables, 𝜏 is the temperature parameter that controls the range of the
scores in the softmax. Finally, we define the prototype loss 𝐿𝑝 as
the negative log-likelihood of the predicted distribution over the
ground-truth labels 𝑦𝑒 :

L𝑝 = − 1
𝑇

𝑇∑︁
𝑖=1

log 𝑝 (𝑦𝑒 = 𝑛 |𝑓𝑖 ) . (7)

As shown in Figure 4(a), by aligning the audio-visual features with
their corresponding prototypes, we can better learn the embedding
space by reducing the intra-class variance and inter-class similarity,
leading to improved audio-visual event recognition performance.

3.4.4 Event-Aware Localization Alignment. To model the re-
lationship between event-related and background audio-visual fea-
tures in the embedding space, we propose a loss function based on
contrastive learning to constrain the feature distribution, aiming to
ensure that the event-related audio-visual features are closer to the
features in the feature bank than the background features.

During training, as shown in Figure 4(b), we minimize the dis-
tance between event-related segments and segments in the bank of
the same event to increase their similarity in the embedding space.
We also maximize the distance between background segments and
segments in the bank of the same event by a margin𝑚 to increase
their separation in the embedding space.

Specifically, we perform contrastive learning between the seg-
ment feature 𝑓𝑖 of event𝑛 and the features𝐵𝑛 = {𝐵𝑛1 , . . . , 𝐵

𝑛
𝑞 , . . . , 𝐵

𝑛
𝐿
}

of the same event in the feature bank. If 𝑓𝑖 is an event-related seg-
ment, we minimize the largest distance between 𝑓𝑖 and all 𝐵𝑛𝑞 . Oth-
erwise, if 𝑓𝑖 is a background segment, we maximize the smallest
distance between them by a margin𝑚:

L𝑐 =
1
𝑇

𝑇∑︁
𝑖=1

𝑦𝑟𝑖 max
1≤𝑞≤𝐿

dist(𝑓𝑖 , 𝐵𝑦
𝑒

𝑞 )

+ (1 − 𝑦𝑟𝑖 ) max(0,𝑚 − min
1≤𝑞≤𝐿

dist(𝑓𝑖 , 𝐵𝑦
𝑒

𝑞 )) .
(8)

3.4.5 General Event Classification & Localization. Besides
the event-specific localization preferences, we also expect the em-
bedding space can capture the general localization preferences.
Therefore, we also adjust the embedding space based on the general
event classification and localization losses. Specifically, we first use
a linear classifier and the mean pooling operation to generate the
event category scores 𝑙𝑒 ∈ R𝐶 :

𝑙𝑒𝑖 = 𝑓𝑖𝑊𝑒 + 𝑏𝑒 , (9)

𝑙𝑒 = Mean({𝑙𝑒1 , . . . , 𝑙
𝑒
𝑖 , . . . , 𝑙

𝑒
𝑇 }), (10)

where𝑊𝑒 ∈ R𝑑×𝑁 and 𝑏𝑒 ∈ R𝑁 are the weight and bias of the
linear layer, respectively. At the training stage, we compute the
cross-entropy loss given the event category scores and the video-
level event category label 𝑦𝑒 :

L𝑒 = − log
exp (𝑙𝑒

𝑦𝑒
)∑𝑁

𝑛=1 exp (𝑙𝑒𝑛)
. (11)

Then, for each segment 𝑓𝑖 in the video, we use a linear classifier
followed by the sigmoid function to generate the event relevance
score 𝑙𝑟

𝑖
∈ R:

𝑙𝑟𝑖 = sigmoid(𝑓𝑖𝑊𝑟 + 𝑏𝑟 ), (12)

where𝑊𝑟 ∈ R𝑑 and 𝑏𝑒 ∈ R are the weight and bias of the linear
layer, respectively. At the training stage, we compute the binary
cross-entropy loss using relevance scores 𝑙𝑟 = {𝑙𝑟1 ; . . . ; 𝑙𝑟

𝑇
} and the

binary segment-level event relevance label 𝑦𝑟 :

L𝑟 = − 1
𝑇

𝑇∑︁
𝑖=1

(𝑦𝑟𝑖 log𝑙𝑟𝑖 + (1 − 𝑦𝑟𝑖 )log(1 − 𝑙𝑟𝑖 )) . (13)

3450



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shiping Ge et al.

Table 1: Comparison of our method with the existing methods under both fully-supervised and weakly-supervised settings.
“VGG+VGGish” means the visual features are extracted by VGG model and the audio features are extracted by VGGish model.

Method
Fully-Supervised Weakly-Supervised

VGG + VGGish VGG + CNN14 VGG + VGGish VGG + CNN14

AVEL (Tian et al. 2018 [22]) 72.7 73.6 66.7 70.2
DAM (Wu et. al. 2019 [27]) 74.5 77.3 - 74.0
AVIN (Ramaswamy et. al. 2020 [19]) 75.2 - 69.4 -
AVT (Lin et. al. 2020 [13]) 75.8 76.7 70.2 74.3
CMRAN (Xu et. al. 2020 [29]) 77.4 78.3 73.0 74.3
MPN (Yu et. al. 2021 [31]) 77.6 72.0 - -
PSP (Zhou et. al. 2021 [34]) 77.8 78.7 73.5 75.7
CMBS (Xia et. al. 2022 [28]) 79.3 - 74.2 -
MM-Pyramid (Yu et. al. 2022 [32]) 77.8 - 73.2 -
SPAV (Wu et. al. 2022 [26]) - 80.1 - 76.3

Ours 80.4 81.3 77.2 78.7

3.5 Optimization
3.5.1 Fully-Supervised Setting. In the fully-supervised setting,
both the video-level event category label𝑦𝑒 and segment-level event
relevance label 𝑦𝑟 are available, so we sum all the losses together
as the optimization objective function:

L𝑓 = 𝜆1L𝑒 + 𝜆2L𝑟 + 𝜆3L𝑢𝑚𝑐 + 𝜆4L𝑝 + 𝜆5L𝑐 , (14)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 and 𝜆5 are trade-off hyper-parameters.

3.5.2 Weakly-Supervised Setting. In the weakly-supervised
setting, only the video-level event category label𝑦𝑒 is available. Fol-
lowing previous work [22, 28], we formulate the weakly supervised
problem as multiple-instance learning (MIL) problem. Specifically,
after obtaining the relevance scores 𝑙𝑟 = {𝑙𝑟1 ; . . . ; 𝑙𝑟

𝑇
}, we aggregate

the individual predictions into a video-level relevance prediction
by mean pooling and compute the video-level relevance loss:

𝑙𝑟 =
1
𝑇

𝑇∑︁
𝑖=1

𝑙𝑟𝑖 , (15)

L𝑤
𝑟 = −(𝑦𝑟 log𝑙𝑟 + (1 − 𝑦𝑟 )log(1 − 𝑙𝑟 )), (16)

where 𝑦𝑟 are the video-level relevance label and 𝑦𝑟 = 1 if the video
contains any event and 𝑦𝑟 = 0 otherwise.

Moreover, we redefine the weakly-supervised version of L𝑢𝑚𝑐

and L𝑐 as:

L𝑤
𝑢𝑚𝑐 = − 1

𝑇

𝑇∑︁
𝑖=1

(log𝑢𝑎𝑖,𝑦𝑒 + log𝑢𝑣𝑖𝑦𝑒 ), (17)

L𝑤
𝑐 =

1
𝑇

𝑇∑︁
𝑖=1

𝑙𝑟𝑖 max
1≤𝑞≤𝐿

dist(𝑓𝑖 , 𝐵𝑦
𝑒

𝑞 )

+ (1 − 𝑙𝑟𝑖 ) max(0,𝑚 − min
1≤𝑞≤𝐿

dist(𝑓𝑖 , 𝐵𝑦
𝑒

𝑞 )) .
(18)

To summarize, the overall objective function for the weakly-
supervised setting is:

L𝑤 = 𝜆𝑤1 L𝑒 + 𝜆𝑤2 L𝑤
𝑟 + 𝜆𝑤3 L𝑤

𝑢𝑚𝑐 + 𝜆𝑤4 L𝑝 + 𝜆𝑤5 L𝑤
𝑐 , (19)

where 𝜆𝑤1 , 𝜆𝑤2 , 𝜆𝑤3 , 𝜆𝑤4 and 𝜆𝑤5 are trade-off hyper-parameters.

3.6 Inference with Event-Aware Double
Branches

At the inference stage, we separately predict the video-level event
category and the segment-level event relevance and combine them
together to get the final prediction. Specifically, we first compute
the distance between all the segments 𝑓𝑖 ∈ 𝐹 of the video and each
event prototype, and choose the event 𝑛 with the smallest distance
as the predicted event category:

𝑛 = min
1≤𝑛≤𝑁

1
𝑇

𝑇∑︁
𝑖=1

dist(𝑓𝑖 , 𝑐𝑛) . (20)

Then, we compute the Euclidean distances between the segment
𝑓𝑖 and each bank feature of the predicted event 𝑛 and choose the
smallest distance 𝛼𝑖 :

𝛼𝑖 = min
1≤𝑞≤𝐿

dist(𝑓𝑖 , 𝐵𝑛𝑞 ). (21)

If 𝛼𝑖 is smaller than the margin𝑚, the segment 𝑓𝑖 will be predicted
as event 𝑛, otherwise, it will be predicted as background.

4 EXPERIMENTS
4.1 Experiment Setup
4.1.1 AVE Dataset. The AVE dataset is collected from AudioSet
[4] by Tian et al. (2018) and contains 4,143 videos covering 28 event
categories. Each video contains one event and is evenly sampled
into 10 audio-visual segments. Then, the event categories are la-
beled for each video on the segment level. The visual and audio
features are pre-extracted following the previous work [22, 34]. For
visual features, we use the VGG-19 model [21] pre-trained on the
ImageNet dataset [3] to extract a 512×7×7-D feature map for each
visual segment. For audio features, we employ either the VGGish
model [7] or the CNN14 model [11], pre-trained on AudioSet [4],
to obtain a 128-D or a 2048-D feature map for each audio segment,
respectively. Our experiments are conducted under two settings:
the first uses VGG-19 for visual features and VGGish for audio fea-
tures (i.e., VGG + VGGish), while the second utilizes VGG-19 for
visual features and CNN14 for audio features (i.e., VGG + CNN14).
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Table 2: Ablation Study of our model. “− Audio Modality” means removing the components related to audio encoding in our
model and training without audio features. “− EADB” means removing our proposed Event-Aware Double Branches.

Setting
Fully-Supvervised Weakly-Supervised

VGG + VGGish VGG + CNN14 VGG + VGGish VGG + CNN14

Full Model 80.4 81.3 77.2 78.7

− Audio Modality 63.7 64.1 61.1 61.2
− Visual Modality 65.3 74.1 62.5 71.3
− Transformer 79.1 80.7 75.9 77.3
− Spatial Fusion 78.3 80.8 76.1 78.2
− Temporal Fusion 75.7 79.5 74.3 76.9
− Spatial and Temporal Fusion 74.0 77.3 73.9 75.2

− JSD-based Bank Update 79.4 80.3 75.2 77.0
− Bank Feature Consistency 77.6 79.1 74.6 76.2

− EADB, + single branch 78.3 79.5 75.1 76.7
− EADB, + double branch 78.9 80.1 75.8 77.1
− EADB, + a variant of EADB 79.1 80.4 76.4 77.6

4.1.2 Evaluation Metrics. To make a fair comparison with previ-
ous methods, we employ the accuracy (𝑎𝑐𝑐) of the predicted event
categories over all segments to evaluate the model performance in
both fully-supervised and weakly-supervised settings.

4.1.3 Implementation Details. We implement our model using
the PyTorch [18] library. We set the number of transformer blocks
as 1 for all the encoders and decoders in our model. The number of
attention heads, dimension of hidden states, and feed-forward layers
are set to 4, 256, and 1,024 in all transformer blocks, respectively.
During the training stage, we train the model for 300 epochs with a
batch size of 128. We adopt the Adam optimizer [10] with an initial
learning rate of 3e-4, and the learning rate is gradually decayed by
the cosine annealing schedule [16]. We set the hyper-parameters 𝜏
to 1, 𝜆1, 𝜆2, 𝜆𝑤1 , 𝜆𝑤2 to 1, 𝜆4, 𝜆5, 𝜆𝑤4 , 𝜆𝑤5 to 0.1, and 𝜆3, 𝜆𝑤3 to 0.01.

4.2 Comparison with Existing Methods
Table 1 provides a comparison of the performance of our method
with state-of-the-art methods in both fully-supervised and weakly-
supervised settings. In the fully-supervised setting, our method
achieves state-of-the-art performancewith an accuracy of 80.4% and
81.3% with 128-d and 2048-d audio feature dimensions, respectively.
This indicates that our method is highly effective in utilizing fully
labeled data to recognize events in videos. In the weakly-supervised
setting, our method outperforms all existing methods with an ac-
curacy of 77.2% and 78.7% with 128-d and 2048-d audio feature
dimensions, respectively. This demonstrates the effectiveness of
our proposed approach for recognizing events in videos when only
video-level category labels are available. Furthermore, our method
achieves better results with a 2048-d audio feature compared to
128-d audio feature in both fully-supervised and weakly-supervised
settings. This suggests that a higher-dimensional audio feature rep-
resentation can capture more discriminative audio features, leading
to improved recognition performance. Overall, the experimental
results demonstrate the effectiveness of our method, which out-
performs state-of-the-art methods in both fully-supervised and

weakly-supervised settings, with the 2048-d audio feature dimen-
sion providing better recognition performance.

4.3 Ablation Study
4.3.1 Effect of the Spatial-Temporal Audio-Visual Fusion En-
coder. In the experiment results shown in Table 2, we conduct an
ablation study to investigate the effect of the components of the
Spatial-Temporal Audio-Visual Fusion Encoder. We first remove the
model components related to audio and visual encoding, respec-
tively, and train the model without audio or visual features. The
results indicate that both modalities are crucial for the AVEL task, as
removing either the audio or visual modality encoding components
from the model results in significant performance drops. Next, we
examine the effect of spatial and temporal fusion by removing the
model components related to either spatial fusion, temporal fusion,
or both of them. The results show that removing either spatial
or temporal fusion from the model results in performance drops,
with temporal fusion having a greater impact on performance than
spatial fusion. Finally, we replace the Transformer block in our
model with the vanilla attention layer [24], which is widely used in
previous AVEL methods [28, 30, 34]. The results indicate that even
without the Transformer block, our proposed spatial-temporal fu-
sion model still achieves state-of-the-art results among all existing
methods, validating the effectiveness of our model and learning
strategies. Overall, these results demonstrate that the proposed
model architecture and fusion strategies are effective for AVEL.

4.3.2 Effect of the Memory Bank. To study the effectiveness of
the memory bank, we compare our memory bank strategy with the
following variants: 1. Replace the JSD-based bank update strategy
with choosing event-related segments randomly. 2. Replace the bank
feature consistency operation with directly storing the audio-visual
features. As shown in Table 2, it can be observed that replacing the
JSD-based bank update component results in a drop in performance,
with scores of 79.4% and 80.3% for the fully-supervised setting
with 128-d and 2048-d feature dimensions, and scores of 75.1%
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Figure 5: (a) Impact of bank size for each event. (b) Impact of
using different𝑚 in the Event-Aware LocalizationAlignment.

and 76.7% for the weakly-supervised setting. On the other hand,
replacing the bank feature consistency operation results in a more
significant drop in performance. The results show the importance
of the Memory Bank in MAML.

4.3.3 Effect of the Event-Aware Double-Branch Localization
Paradigm. To study the effectiveness of our proposed Event-Aware
Double-Branch Localization (EADB) paradigm, we compare it with
the following variants: 1. Replacing EADB with a single (N+1)-class
classification branch (as illustrated in Figure 1(a)); 2. Replacing
EADB with the traditional double-branch (as illustrated in Figure
1(b)); and 3. Replacing EADB with a variant of EADB, which main-
tains the dependence between the two branches but removes the
MAML and only uses non-parameter-sharing classifiers (i.e., ablat-
ing the parameter sharing among all classifiers in the two branches
in Figure 1(c)). The results in Table 2 suggest that EADB plays an im-
portant role in the model’s performance, and replacing it with other
paradigms could have a negative impact on localization accuracy.
Furthermore, among the models with different AVEL paradigms,
the variant EADB achieves the highest accuracy, followed by the
double-branch model and the single-branch model, which validate
the effectiveness of utilizing event-specific localization preferences.

4.4 Model Analysis
4.4.1 Impact of Bank Size for Each Event. We conduct experi-
ments to investigate the influence of different feature numbers of
each event category in the memory bank. We set the number of
each event category in the memory bank from 8 to 32 step by 4
and then train and test the model with different settings. Figure
5(a) shows the impact of bank size for each event on the AVEL
accuracy. We can observe that the performance of the model varies
with the number of features in the memory bank. When the num-
ber of features is 16, the model achieves the highest accuracy for
both the 128-d and 2048-d audio inputs with fully-supervised and
weakly-supervised training. However, when the number of features
is too small or too large, the classification accuracy decreases. This
suggests that maintaining an appropriate number of features for
each event category is important for achieving good performance.

4.4.2 Impact of Margin𝑚 in the Event-Aware Localization
Alignment. Furthermore, we conduct experiments to investigate
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Figure 6: The t-SNE visualization of the audio-visual features
in the test set. The • symbol denotes the event segments and
the × symbol denotes the background segments.

the impact of the margin𝑚 in the proposed event-aware double-
branch localization paradigm. We set 𝑚 from 0.5 to 1.1 step by
0.1, and then train and test the model with different𝑚. The results
shown in Figure 5(b) reveal that the accuracy of themodel is affected
by the choice of𝑚 value. Specifically, when𝑚 is set to 0.7 for the
fully-supervised setting and 0.9 for the weakly-supervised setting,
the model achieves the highest accuracy among all tested values.
Moreover, when𝑚 is smaller or larger, the accuracy of the model
decreases. This suggests that a moderate margin value can balance
the influence of the intra-event variation and inter-event distance in
the embedding space, resulting in improved localization accuracy.

4.4.3 Visualization of Learned Embeddings. Figure 6 shows
the visualization of the fused audio-visual features using t-SNE
[23]. It can be observed that most samples are divided into different
semantic clusters according to their events correctly after training.
Also, the background features of each event category are closer to
their e-related features than to the features of other categories. The
visualization result indicates that our method can model the rela-
tion between event-specific background features and event-related
features and construct the semantic embedding space effectively.

5 CONCLUSION
In this paper, we aim to perform audio-visual event localization
task by leveraging event-specific localization preferences. To this
end, we propose a novel event-aware double-branch localization
paradigm. Moreover, we design a spatial-temporal audio-visual
fusion encoder to capture the spatial and temporal interaction be-
tween audio and visual modalities, and introduce amemory-assisted
metric learning framework to well align the representation space.
Experimental results demonstrate the effectiveness of our proposed
method in both fully-supervised and weakly-supervised settings.
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