
Towards Real-Time Sign Language Recognition and Translation
on Edge Devices

Shiwei Gan
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

sw@smail.nju.edu.cn

Yafeng Yin∗
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

yafeng@nju.edu.cn

Zhiwei Jiang
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

jzw@nju.edu.cn

Lei Xie
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

lxie@nju.edu.cn

Sanglu Lu
State Key Laboratory for Novel
Software Technology, Nanjing

University
China

sanglu@nju.edu.cn

ABSTRACT
To provide instant communication for hearing-impaired people,
it is essential to achieve real-time sign language processing any-
time anywhere. Therefore, in this paper, we propose a Region-
aware Temporal Graph based neural Network (RTG-Net), aiming
to achieve real-time Sign Language Recognition (SLR) and Transla-
tion (SLT) on edge devices. To reduce the computation overhead,
we first construct a shallow graph convolution network to reduce
model size by decreasing model depth. Besides, we apply struc-
tural re-parameterization to fuse the convolutional layer, batch
normalization layer and all branches to simplify model complex-
ity by reducing model width. To achieve the high performance in
sign language processing as well, we extract key regions based
on keypoints in skeleton from each frame, and design a region-
aware temporal graph to combine key regions and full frame for
feature representation. In RTG-Net, we design a multi-stage train-
ing strategy to optimize keypoint selection, SLR and SLT step by
step. Experimental results demonstrate that RTG-Net achieves com-
parable performance with existing methods in SLR or SLT, while
greatly reducing the computation overhead and achieving real-time
sign language processing on edge devices. Our code is available at
https://github.com/SignLanguageCode/realtimeSLRT.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.
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1 INTRODUCTION
Sign language is the primary communication way for deaf people.
To bridge the communication gap between deaf people and hear-
ing people, a lot of research work on sign language understanding
emerged, including sign language recognition (SLR) [26] and sign
language translation (SLT) [4]. Specifically, SLR aims to recognize a
series of signs as corresponding gloss sequence. While SLT further
advances the understanding of sign language, it aims to translate
the sign language into spoken language, i.e., the translated sen-
tence satisfies the grammatical rules and linguistic characteristics
of spoken language. Therefore, SLT can be treated as a further step
of SLR. When applying an appropriate translation model [52] on
recognized gloss sequence of SLR, it is possible to get the translated
sentence of SLT.

Whatever for SLR or SLT, the existing work mainly focused on
extracting efficient features from videos by 2D convolution [3] or
3D convolution [22]. Compared with 2D convolution, the 3D con-
volution further takes temporal features into consideration, thus
the computation overhead of 3D convolution is often very heavy.
However, as shown in Figure 1 (a), the existing work usually paid
little attention to computation overhead, and they often worked on
powerful servers configured with high-performance GPUs, while
difficult to work on devices with ordinary computing power, e.g.,
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(a) Existing methods: running on the server with GPUs

(b) Our method: running on the edge device without GPUs

Sign language video

SLR/SLT

Server with GPUsDeep model

Sign language video

SLR/SLT
Edge device

without GPUs
(e.g., a tablet PC)

Shallow model

Figure 1: Difference between existing methods and our
method on SLR and SLT.

edge devices 1 without GPUs. In fact, to provide instant communica-
tions for deaf people anytime anywhere, it is important to achieve
real-time sign language processing on portable edge devices (e.g.,
Microsoft Surface Pro 6), as shown in Figure 1 (b). In regard to
the extracted features, they are often consisted of full-frame fea-
tures [12] and local-area features [56]. However, the prior work
tended to extract full-frame and local-area features individually,
and concatenated them for final feature representation. The region
structure between full frames and local areas, and the temporal
interactions among the same regions (e.g., the hand area) in adja-
cent frames had not been fully studied. Therefore, a real-time sign
language processing approach with more efficient representation
of region-related features is expected.

To address the above issues, in this paper, we propose a Region-
aware Temporal Graph based Network (RTG-Net) for real-time SLR
and SLT on edge devices. First, to achieve real-time sign language
processing on edge devices without GPUs, we design a shallow graph
convolution network, which utilizes the lightweight 2D convolu-
tions and graph convolutions to reduce model size by decreasing
model depth (i.e., the number of layers in a model). Furthermore,
we apply the structural re-parameterization to fuse the convolu-
tional layer, batch normalization layer and all branches, to further
simplify model complexity by reducing model width (i.e., number
of branches in a model). Second, to extract efficient features with the
shallow network and achieve the good performance for SLR and SLT,
we first extract key regions based on keypoints in skeleton from
each frame, to highlight both manual features like hand motion
and non-manual features like facial expression in sign language.
Then, we combine key regions and full frame (i.e., whole region) by
designing a Region-aware Temporal Graph, which preserves the
region structure in one frame as well as the region’s correlations
among adjacent frames (i.e., along time), to make full use of both
spatial and temporal information of signs. Finally, we design amulti-
stage optimization strategy for model training to further improve
SLR and SLT performance of RTG-Net. We make the following
contributions in this paper.
• To the best of our knowledge, this is the first work focusing
on real-time video-based SLR and SLT on portable edge

1Edge devices can encompass various types of devices, e.g., smartphones, tablets,
personal computers. In this paper, the edge device refers to Microsoft Surface Pro 6,
which can be used as a tablet.

devices, to assist for instant communication between deaf
people and hearing people.
• To achieve the real-time requirement, we design a shal-
low graph convolution network to reduce model size by
decreasing model depth. Besides, we adopt the structural
re-parameterization to fuse the convolutional layers, batch
normalization layers and all branches, to simplify model
complexity by reducing model width.
• To extract efficient features for SLR and SLTwith lightweight
network, we combine the key-region features and full-frame
feature by designing a Region-aware Temporal Graph, which
preserves the region structure in one frame as well as the re-
gion’s correlations among adjacent frames (i.e., along time).
• Extensive experiments on three public datasets demonstrate
that our network can achieve real-time SLR and SLT on
edge devices (i.e., Microsoft Surface Pro 6) while having
comparable performance with existing methods.

2 RELATEDWORK
Sign language recognition: Sign language recognition (SLR) can
be further classified into two categories, i.e., isolated SLR (ISLR)
and continuous SLR (CSLR). The ISLR aims to recognize a sign as a
word, it can be treated as sign classification. To achieve this goal,
the hand-crafted features [47] and Hidden Markov Model [16, 18]
were adopted in early work. Recently, to further improve the feature
representation, neural networks like CNN [20, 21] and LSTM [1, 34]
were introduced for automatic feature extraction. When moving
to CSLR [11, 19, 25, 27, 31, 35, 36, 40, 41, 54], it aims to recognize a
series of signs as gloss sequence. To achieve this goal, the traditional
methods like DTW-HMM [53] and CNN-HMM [27–29] introduced
Hidden Markov Model (HMM) to model sign sequence features. Re-
cently, the deep learning based methods [3, 22, 56] solved CSLR by
sequence to sequence learning, which learned the correspondence
between sign sequence and gloss sequence. In the work, the Con-
nectionist Temporal Classification (CTC) loss [15] which requires
that the source sequence and the target one have the same order
was often adopted. However, due to the grammatical differences,
the signs in sign language and words in spoken language can be
different. Thus the recognized gloss sequence of CSLR may not
satisfy the requirement of spoken language.

Sign language translation: Sign language translation (SLT) [8,
9] aims to translate sign language into spoken language. The tra-
ditional methods [2] decomposed SLT into two stages, including
CSLR and gloss-to-text translation. These two-stage methods need
both gloss annotations and sentence annotations, and can be op-
timized in two stages. In recent years, the deep learning based
methods were introduced for SLT in an end-to-end manner. These
approaches often adopted encoder-decoder framework [14] and
they utilized the encoder to extract features from videos, while
using the decoder to generate the spoken language based on ex-
tracted features. Specifically, Camgoz et al. [4] first introduced the
encoder-decoder network and attention mechanism for end-to-end
SLT. Further, Camgoz et al. [6] introduced the transformer net-
works for joint SLR and SLT. Usually, these approaches utilized the
encoder to extract features from videos, while using the decoder to
generate the spoken language based on extracted features.
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Figure 2: The framework of RTG-Net.
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Figure 3: The design of BodyNet. Note: FaceNet, LHandNet
and RHandNet have the similar architecture with the main
network of BodyNet, while not having the keypoint selection
branch.

Whatever for SLR or SLT, to achieve a good performance, these
deep learning based approaches usually focused on extracting effi-
cient features, e.g., using 2D convolution to extract spatial features,
using 3D convolution to extract spatial-temporal features, combin-
ing full-frame and local-area features. However, this work mainly
focused on recognition or translation performance, while paying
little attention to the computation overhead in SLR or SLT. In fact,
due to the heavy computation, the deep learning based method of-
ten worked on powerful servers configured with high-performance
GPUs, while difficult to work on devices with ordinary computing
power, e.g., edge devices without GPUs. Different from the existing
work, this paper aims to achieve real-time sign language recognition
and translation on edge devices by designing a lightweight network
with a good capacity of feature extraction, aiming to provide instant
communication for deaf people and hearing people.

3 PROPOSED APPROACH
Given a sign language video𝑋={𝑓𝑡 }𝑢𝑡=1 with𝑢 frames, the objective
of SLR is to predict the corresponding gloss sequence 𝐺={𝑔𝑡 }𝑣𝑡=1
with 𝑣 glosses, while the goal of SLT is to generate a spoken lan-
guage sentence 𝑌={𝑤𝑡 }𝜏𝑡=1 with 𝜏 words based on the glosses 𝐺 .

As shown in Figure 2, we first convert RGB frames of the input
sign video to grayscale frames. Then we design RegionRep module
to extract key regions (i.e., face region, left/right hand region) from
each frame based on keypoints of skeleton, and design four subnet-
works to get feature representation of full frame and key regions.
After that, we design the RegionGraph module by constructing a
region-aware temporal graph and a graph convolutional network
to get the final feature representation for each sign language video.

Table 1: The detailed settings of each subnetwork. (𝑁𝑖 ,𝐶𝑖 )
means that stage 𝑖 adopts 𝑁𝑖 RepBlocks and outputs 𝐶𝑖 chan-
nels. Note: LHandNet and RHandNet share the same archi-
tecture.

Name (𝑁1,𝐶1) (𝑁2,𝐶2) (𝑁3,𝐶3) (𝑁4,𝐶4) (𝑁5,𝐶5)
BodyNet (1,64) (4,64) (6,128) (8,256) (2,512)
FaceNet (1,32) (2,32) (2,64) (2,128) (1,512)
L/RHandNet (1,32) (2,32) (4,64) (8,128) (1,512)

Finally, we design the TextInfer module, which adopts joint loss
for SLR and introduces a tiny translation subnetwork for SLT. It is
worth noting that, to reduce parameters and computation overhead,
we first reduce model depth by utilizing lightweight 2D convolu-
tions and graph convolutions, then reduce model width by applying
the structural re-parameterization to fuse all branches.

3.1 Key Region Extraction and Representation
In sign language, the signs are composed of both manual fea-
tures like hand motion and non-manual features like facial expres-
sion [51]. To emphasize manual features and non-manual features,
we additionally extract the key regions (i.e., left/right hand region,
face region) from images to enhance feature representation of signs.
Specifically, we design the RegionRep module, which first crops key
regions from each frame based on human skeleton information, and
then extracts features from both full frame and key regions based
on four designed subnetworks (i.e., BodyNet, FaceNet, LHandNet,
RHandNet).

Key region extraction: To extract key regions (i.e., face region,
left/right hand region) from each frame, we first introduce the
keypoints (i.e., nose, left wrist and right wrist) in skeleton to locate
the center of each key region, and then crop a rectangular region
around each center to get key regions.

To get the three keypoints, we design a self-contained branch
in BodyNet to get the heatmaps containing keypoints, as shown
in Figure 3. When inputting an image (i.e., full frame) to BodyNet,
the main network is used to extract features from the full frame,
while the keypoint selection branch is used to extract the key-
points from full frame. In regard to the keypoint selection branches,
two parallel deconvolutional layers after stage 3 and stage 4 are
used to upsample the high-to-low representations [43]. Then, the
pointwise convolutional layers and element-sum operations are
adopted to generate three heatmaps, where each heatmap con-
tains one keypoint (𝑥𝑖 , 𝑦𝑖 ), 𝑖∈[1, 3]. Specially, a heatmap is a 2D
matrix, where the coordinate point with the highest heatvalue is
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Figure 4: Design of region-aware temporal graph and S-GCN.

the keypoint. After that, we respectively crop a rectangular region
{(𝑥,𝑦) | (𝑥𝑖 − 𝑤𝑟

2 )≤𝑥≤ (𝑥𝑖 +
𝑤𝑟

2 ), (𝑦𝑖 −
ℎ𝑟
2 )≤𝑦≤ (𝑦𝑖 +

ℎ𝑟
2 )} around

a keypoint to get three key regions, where 𝑤𝑟 , ℎ𝑟 are width and
height of cropped region.

Feature representation: To get the feature representation of
full frame, face region, hand regions, we accordingly design four
subnetworks, i.e., BodyNet, FaceNet, LHandNet, RHandNet. The
main framework of each subnetwork is the same, as the main net-
work of BodyNet shown in the top row of Figure 3. The only differ-
ences among the four subnetworks are the number of RepBlocks
and output channels, as listed in Table 1. In regrad to the design of
each subnetwork, as shown in Figure 3, it is based on RepVGG [13]
, which utilizes RepBlock (shown in Figure 5) to extract feature
maps from the input image. Then, the extracted feature maps are
concatenated, flattened and sent to a fully connected layer to get a
feature vector with 256 elements for each key region or full frame.

3.2 Region-Aware Temporal Graph Based
Feature Extraction

In addition to the full frame, the key regions are also cropped for
feature extraction. For key regions in the same frame, they can
combine different regions (i.e., spatial information) to describe a
gesture. For the same type of key regions (e.g., left hand regions)
in consecutive frames, they can describe the dynamic changes (i.e.,
temporal information) of an action. To make full use of both spatial
and temporal information of signs, we design a novel RegionGraph
module, which first constructs a Region-aware Temporal Graph
(RTG) by preserving the region structure in one frame as well as
the region correlations among consecutive frames, then proposes a
shallow graph convolutional network to extract and fuse features
from different regions based on RTG.

Region-aware Temporal Graph: To construct the Region-
aware Temporal Graph 𝐺=(𝑉 , 𝐸), we treat the full frames, face
regions, left/right hand regions as nodes 𝑉 , while the relationship
between nodes are the edges 𝐸. In the 𝑖th frame, there are four nodes
{𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3 , 𝑣𝑖4 } corresponding to full frame, face, left/right hand re-
gion. For 𝑁 frames, we get the node set𝑉= {𝑣𝑖 𝑗 , 𝑖∈[1, 𝑁 ], 𝑗∈[1, 4]}.
In regard to the edge set, it includes the intra-frame edge set 𝐸𝑎
and inter-frame edge set 𝐸𝑒 , as shown in Figure 4. For intra-frame
edges, the full frame 𝑣𝑖1 which has overlap with each key region is
selected as the center node and connects with each key region, as
shown in Figure 2. Thus we can get the intra-frame edge set 𝐸𝑎=
{𝑣𝑖𝑝 𝑣𝑖𝑞 |𝑖∈[1, 𝑁 ], (𝑝, 𝑞)∈𝑆}where 𝑆={(1, 2), (1, 3), (1, 4), (2, 1), (3, 1),
(4, 1)}. For the inter-frame edge set, it is consisted of the edges be-
tween corresponding nodes in two adjacent frames, thus 𝐸𝑒 =

{𝑣𝑖𝑝 𝑣 𝑗𝑝 |𝑖, 𝑗 ∈ [1, 𝑁 ], |𝑖 − 𝑗 | = 1, 𝑝 ∈ [1, 4]}.

Graph
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Figure 5: Structural re-parameterization for ResGraphConv
and RepBlock.

Feature extraction with Shallow GCN: With the Region-
aware Temporal Graph, we design a Shallow Graph Convolution
Network (S-GCN) to aggregate the features from different regions.
As shown in Figure 4, our S-GCN consists of four GCN units, where
each GCN unit consists of two convolution blocks, two residual
graph convolution blocks (ResGraphConv) and a ReLU function.
Specially, 1×1 convolution block is used for exploiting intra-node
features and changing feature dimensions, 3×1 convolution block
is adopted for leveraging dynamic changes of the same key re-
gions along time, and ResGraphConv block consisted of a graph
convolution layer and a skip connect is designed for node feature
propagation and aggregation. After four GCN units, the flatten
operation and a fully connected layer are adopted to get the final
feature vector 𝑜𝑖 , 𝑖∈[1, 𝑁 ] for each frame. Specially, the input of
S-GCN is the Region-aware Temporal Graph 𝐺=(𝑉 , 𝐸), where the
initial representation of each node 𝑣𝑖 𝑗 is the output feature vector
from RegionRep module, while the representation of edges is an ad-
jacency matrix Me∈R4𝑁×4𝑁 describing the connections between
nodes, as shown in Equation 1. Here, Iv means the input feature
vector set of node set, while O means the final feature set and will
be sent into the following modules for SLR or SLT.

O = S−GCN(Iv,Me) (1)

3.3 Structural Re-parameterization
Considering the limited computing resource on edge devices, we
re-design the structural re-parameterization to simplify all branches
in our model, including the firstly-proposed new structural re-
parameterization method for residual graph convolution block,
as shown in Figure 5. Usually, structure re-parameterization [13] is
used to decouple the training stage and inference stage in neural
network. In the training stage, we keep the original structures to
make the model converge better [46]. While in the inference stage,
we fuse all branches to simplify the computation of all modules,
where the simplified modules are mathematically equivalent to
original modules.

Fusing residual graph convolution block: As shown in Fig-
ure 5(a) and 5(b), our ResGraphConv block consists of a graph
convolution layer [24] with a skip connection, and it can be formu-
lated as follows,

X
′
= X + GCN(X) = X + (D̂−

1
2 ÂD̂−

1
2 XΘ) (2)

where X denotes features of node set 𝑉 , Â denotes the adjacency
matrix of RTG with inserted self-loops, D̂ is diagonal degree matrix
and Θ is graph convolution weight. To demonstrate the fusion of
ResGraphConv block, we transform Equation 2 to Equation 3 from
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the aspect of node.

x
′
i = xi + GCN(xi) = xi + (Θ1xi + Θ2

∑︁
𝑗∈N(𝑖 )

ej,ixj) (3)

where xi is feature of node 𝑖 , ej,i is the edge weight from source
node 𝑗 to target node 𝑖 , Θ1, Θ2 are graph convolution weights, and
N(𝑖) is neighbor nodes of node 𝑖 . Furthermore,

x
′
i = (Θ1 + I)xi + Θ2

∑︁
𝑗∈N(𝑖 )

ej,ixj = GCN∗ (xi) (4)

we get Θ
′
1=Θ1+I where I is identity matrix, and Θ

′
2=Θ2 as weights

of new fused graph convolution layer GCN∗.
Fusing convolutional and batch normalization layers: As

shown in Figure 5, there are three branches in a RepBlock. Among
the branches, the single batch normalization (BN) layer can be
equivalently transformed as a 1×1 convolutional layer whose con-
volution kernel is an identity matrix and a BN layer. Thus, in each
branch, there is a convolutional layer with 𝑛×𝑚 kernel size (𝑚 can
be equal to 𝑛) and a BN layer. For the convolutional layer, we use
Wn,m∈R𝐶2×𝐶1×𝑛×𝑚 and 𝑏 to represent its convolution kernel and
bias. Here, 𝐶2 and 𝐶1 mean the number of output and input chan-
nels. For the BN layer, we use 𝜇, 𝜎 , 𝛾 , 𝛽 to represent its accumulated
mean, standard deviation, learned scaling factor and bias, respec-
tively. In regard to the input and output of the RepBlock module,
they are represented with x∈R𝑁×𝐶1×ℎ1×𝑤1 and y∈R𝑁×𝐶2×ℎ2×𝑤2 ,
respectively. Here, 𝑁 is the batch size, while ℎ𝑖 and 𝑤𝑖 , 𝑖∈[1, 2]
respectively mean the height and width of feature map. To fuse the
original convolutional layer and BN layer, we adopt Equation 5 to
get an alternative convolutional layer, which transforms the orig-
inal two-step operation (i.e., convolution and BN) into one-step
operation in a mathematically equivalent way.

BN(CONV(x)) = 𝛾 Wn,m (x) + 𝑏 − 𝜇
𝜎

+ 𝛽

=
𝛾

𝜎
Wn,m (x) + (𝛾 (𝑏 − 𝜇)

𝜎
+ 𝛽)

(5)

In the new alternative convolutional layer, the convolution kernel
is Wn,m′=

𝛾
𝜎 W𝑛,𝑚 , while the bias is 𝑏′=𝛾 (𝑏−𝜇 )𝜎 + 𝛽 .

Merging multi-branches: In a RepBlock, when considering
the kernel size difference in each branch, we adopt zero-padding
to extend the 1×1 convolution kernel to 𝑛×𝑛 convolution kernel.
Then, we use Equation 5 to transform each branch into a new 𝑛×𝑛
convolutional layer. After that, we use Equation 6 to add the three
kernels W𝑛′ , W1′ and W0′ as well as the three bias vectors 𝑏𝑛

′
,

𝑏1
′
, 𝑏0

′
to get the final convolution kernel and bias of the merged

“RepBlock* 𝑛×𝑛”, as shown in Figure 5 (e).
y = BN(Wn (x) + 𝑏𝑛) + BN(W1 (x) + 𝑏1) + BN(x)

= Wn′ (x) +W1′ (x) +W0′ (x) + 𝑏𝑛
′
+ 𝑏1

′
+ 𝑏0

′

= (Wn′ +W1′ +W0′ ) (x) + (𝑏𝑛
′
+ 𝑏1

′
+ 𝑏0

′
)

(6)

3.4 Gloss Prediction and Sentence Generation
After getting the final feature representation of a sign language
video, we design TextInfer module to predict glosses and generate
the spoken sentence.

Gloss recognition: To predict the gloss sequence 𝐺={𝑔𝑡 }𝑣𝑡=1,
we adopt CTC loss to calculate the maximum probability of aligning
input frames and output glosses.

Sentence generation: With the predicted gloss sequence 𝐺 =

{𝑔𝑡 }𝑣𝑡=1, we design a tiny translation network to generate the spo-
ken language sentence 𝑌={𝑤𝑡 }𝜏𝑡=1. In the translation from gloss
sequence to spoken language, word morphology changes due to
restrictions on grammar rules, e.g., ‘Lieb’ in gloss sequence changes
to ‘Liebe’ in spoken language, as shown in Figure 2. Thus we design
a char-level encoder and a word-level encoder to learn correlations
of the same word in different forms, aiming to benefit SLT using
variants of a word.

Char-level encoder : For a gloss 𝑔𝑡 , we use {𝑐 𝑗𝑡 }
𝑛𝑡
𝑗=1 to represent its

𝑛𝑡 characters. The initial embedding of char 𝑐 𝑗𝑡 is set as 𝑒
𝑗
𝑡 , then we

adopt a character-level encoder, which utilizes 1D convolution and
max-poolingMP[·] to get the fixed-length char-level embedding
𝑒𝑡 of gloss𝑔𝑡 , as shown in Equation 7, where [·] is the concatenation
operation.

𝑒𝑡 =MP[CONVc (e1t ), CONVc (e2t ), ..., CONVc (entt )] (7)

Word-level encoder: We set the initial embedding of gloss 𝑔𝑡
as 𝑟𝑡 , then we adopt a word encoder, which combines the initial
word-level embedding 𝑟𝑡 and the char-level embedding 𝑒𝑡 to get
the word-level embedding 𝑟∗𝑡 of gloss 𝑔𝑡 , as follows.

𝑟∗𝑡 = [𝑟𝑡 , CONV𝑤 [𝑟𝑡 , 𝑒𝑡 ]] (8)

Transformer decoder : With the gloss embeddings {𝑟∗𝑡 }𝑣𝑡=1, we
use three-layered transformer with hidden size 512 and multi-head
number 8 to predict the final spoken sentence. The transformer
outputs the prediction probability of the word𝑤𝑡 step by step with
“[SOS]" as the start symbol and “[EOS]" as the end symbol.

3.5 Multi-stage Training
We design a progressive optimization strategy to train our network
step by step for better performance.

1) Heatmap regression for keypoint detection: The keypoint detec-
tion lossL𝐻 is calculatedwith Equation 9, where𝑀𝐻 ,𝑀𝐺∈R𝐾×ℎ×𝑤

denote the predicted heatmap and the groundtruth heatmap, re-
spectively, and 𝐾 , ℎ, 𝑤 are the number of keypoints, the height
and width of a heatmap. In our model, 𝐾=3 which represents nose,
left/right wrists. In regard to the ground-truth heatmap, it has a
heating area containing the keypoint, where the heating area is
produced by applying a 2D Gaussian function with 1-pixel standard
deviation [43] on the estimated keypoint from OpenPose [7].

L𝐻 =
1
𝐾

𝐾∑︁
𝑘

ℎ∑︁
𝑖

𝑤∑︁
𝑗

(𝑀𝐻
𝑘,𝑖, 𝑗
−𝑀𝐺

𝑘,𝑖, 𝑗
)2 (9)

2) Joint loss for SLR: We employ CTC loss to predict the gloss
sequence 𝐺 based on features O. The CTC loss calculates the prob-
ability of all possible alignment paths Γ between O and 𝐺 , thus
it is formalized as: L𝐶𝑇𝐶 = − ln(∑𝜑∈Γ 𝑝 (𝜑 |O)). Furthermore, to
achieve the goal of SLR, we calculate the joint loss 𝐿𝑠𝑙𝑟 based on
𝐿𝐻 and 𝐿𝐶𝑇𝐶 , as follows.

L𝑠𝑙𝑟 = L𝐻 + L𝐶𝑇𝐶 (10)

3) Data augmentation for translation: Finally, the cross entropy
loss L𝑠𝑙𝑡=−

∑𝑇
𝑡=1

∑𝑉
𝑖=0 𝑝 (𝑤

𝑖
𝑡 )𝑙𝑜𝑔(𝑝 (�̂�𝑖𝑡 )) is adopted to train our
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(a) Input of 1st GCNunit (b) Output of 1st GCNunit (c) Output of 2nd GCNunit (d) Output of 3rd GCNunit (e) Output of 4th GCNunit

Figure 6: Visualization of feature distribution extracted by each GCN unit on one PHOENIX14T sample, which is displayed via
t-SNE [44]. Blue, red, green and black points represent the feature of full frame, face, left hand and right hand, respectively.

translation network, where 𝑝 (�̂�𝑡 ) is the probability of predicted
word and 𝑝 (𝑤𝑡 ) is the probability of ground-truth word at the 𝑡 th
time step. In addition, considering that the limited number of gloss-
sentence pairs (𝐺𝑖 , 𝑌𝑖 ) provided by datasets hinders translation
performance, we further introduce data augmentation for the trans-
lation network. Specifically, we take our SLR module as a generator
network and add new gloss-text pairs (𝐺 ′

𝑖
, 𝑌𝑖 ) into training sam-

ples if WER(𝐺 ′
𝑖
,𝐺𝑖 )≤0.25. The extended spoken language corpus

reaches 100 times as large as the original corpus.

4 PERFORMANCE EVALUATION
4.1 Datasets
Three public datasets are used to evaluate our model in two as-
pects, i.e., SLR and SLT. (1) CSL [22] is a Chinese Sign Language
dataset that contains 25K labeled videos with 100 Chinese sen-
tences from 50 signers and it is used for CSLR in our experiment.
(2) PHOENIX14 [26] is a German Sign Language dataset that has
been widely used for CSLR tasks. It contains 5672, 540, 629 weather
forecasts samples from 9 signers for training, validation, and test-
ing respectively. (3) PHOENIX14T [4] contains 7096, 519 and 642
samples for training, validation, and testing respectively. It has
two-stage annotations: gloss annotations with a vocabulary of 1066
different signs for CSLR and German translation annotations with
a vocabulary of 2877 different words for SLT.

4.2 Experimental Setting
Now, we describe the detailed setting in RTG-Net. For data prepro-
cessing, each frame is reshaped into 224×224 pixels and the Gaussian
noises are added for data augmentation. For key region cropping, the
size of cropped face region is set to 30×30, 40×40 and 40×40 pixels
for CSL, PHOENIX14 and PHOENIX14T datasets, respectively. The
size of cropped left or right hand region is set to 40×40, 60×60
and 60×60 pixels for CSL, PHOENIX14 and PHOENIX14T datasets,
respectively. For model training, the batch size is set to 24. Adam
optimizer is used to optimize model parameters and initial learning
rate is set to 0.0001 with a decay factor of 0.8. Besides, dropout
with a rate of 0.5 is used after word embedding layer. For model
implementation, our model is implemented with PyTorch 1.8 and
trained for 100 epochs on 4 NVIDIA Tesla V100 GPUs. Besides we
evaluate our model on an edge device without GPUs, i.e., Microsoft
Surface Pro 6 configured with 1.90GHZ i7-8650U CPU and 16G
RAM.

In regard to the performance metrics, we adopt the commonly-
used Word Error Rate (WER) [26] as the metric for SLR tasks, while

Table 2: Ablation study of backbone network on
PHOENIX14T. Edge(200) means the inference time of
200 frames on Microsoft Surface Pro 6

PHOENIX14T DEV TEST Time(s) Model
WER WER Edge(200) Size FLOPs Params

VGG 35.14 36.87 47.21 836.0 1570.9 217.04
Resnet18 19.42 19.75 26.58 203.0 782.2 51.53
MobileNetV1 34.59 33.45 11.56 81.4 153.5 19.57
MobileNetV2 32.46 36.55 12.75 65.5 64.1 15.97
RTG-Net 19.63 20.01 6.27 80.9 244.5 19.88

adopting the ROUGE-L F1-Score [33] and BLEU-1,2,3,4 [39] as the
metrics for SLT tasks. In addition, to measure the resource and com-
putation overhead of an approach, we also introduce the following
metrics, i.e., model size (MB), the number of floating-point oper-
ations (FLOPs) (G), the quantity of parameters (M) and inference
time (Seconds), and these metrics are measured on the same edge
device (i.e., Microsoft Surface Pro 6).

4.3 Model Performance
To verify the effectiveness of proposed network (RTG-Net), we
perform the ablation study and time analysis.

Ablation study: To estimate the contributions of designed com-
ponents in RTG-Net, we perform the ablation study on PHOENIX14T
dataset. In regard to the designed components, they mainly include
feature extraction component, graph-related components, struc-
tural re-parameterization and data augmentation. In the ablation
experiments, we remove only one type of component at a time, and
use ‘DEV’ and ‘TEST’ to represent the validation set and test set,
respectively.

1) Feature extraction component: To extract efficient features from
each region, we design four subnetworks, which have the similar
architecture and all adopt RepVGG as the backbone. To verify the
effectiveness of the adopted backbone network in feature extraction,
we replace our backbone with other mainstream networks (i.e.,
VGG, ResNet18, MobileNetV1, MobileNetV2), while keeping the
dimension of output features unchanged. According to Table 2, only
ResNet18 can achieve a comparable performance with ours (i.e.,
19.42% WER in dev set), while the inference time of ResNet18 is
more than four times of ours. Therefore, the RepVGGwith structural
re-parameterization in our model can achieve the best balance of
SLR performance and computation overhead, which can efficiently
extract features.

2) Graph-related Components: The graph-related components
include the constructed region-aware temporal graph and S-GCN.
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Table 3: Ablation study of RTG and S-GCN on PHOENIX14T.

PHOENIX14T DEV TEST Time(s) Model
WER WER Edge(200) Size FLOPs Params

w/o Face 23.25 24.74 6.10 74.9 243.3 18.31
w/o lhand 27.20 28.68 6.00 71.3 240.8 17.35
w/o rhand 29.53 32.55 6.00 71.3 240.8 17.35
w/o frame 40.33 39.87 5.92 62.2 226.8 15.26
AllConnect 19.73 19.94 6.65 80.9 244.5 19.88
LSTM 45.39 46.33 10.54 713.2 261.4 186.44
BiLSTM 38.75 40.22 20.50 1831.1 289.9 479.74
Transformer 28.92 29.22 17.86 971.2 270.8 62.75
ST-GCN 22.23 23.14 15.65 125.0 276.5 31.61
RTG-Net 19.63 20.01 6.27 80.9 244.5 19.88

Table 4: Ablation study of different number of GCN units on
PHOENIX14T.

Num DEV TEST Time(s) Model
WER WER Edge(200) Size FLOPs Params

2 26.55 27.28 5.73 75.7 242.6 18.27
4 19.63 20.01 6.27 80.9 244.5 19.88
6 19.37 19.85 6.95 87.3 246.0 20.90
8 20.65 20.01 7.84 94.8 247.4 22.21
10 23.46 25.83 8.73 102.0 248.9 23.52

In regard to the constructed RTG, it is consisted of four kinds of
nodes and edges. In the experiment, everytime we only remove
one kind of node and the edge connected to these nodes. When
removing the full-frame node, all the original edges will be removed,
thus the remaining three nodes in a frame will be connected as
a complete graph. According to Table 3, when removing the full
frame, face, left or right hand region, the WER increases by 20.7%,
3.62%, 7.57% or 9.9% in dev set, respectively. It indicates that each
region contributes to a better performance, especially the full frame
which contains the global information of signs. In addition, we also
verify the effectiveness of edges (i.e., connection ways between
nodes). Specifically, instead of connecting each key region with
the full frame, we connect every two regions to get a complete
graph of a frame, which is possible to provide more interactions
between nodes. According to Table 3, when using the complete
graph (‘AllConnect’), the SLR performance is quite close to that of
our model, but the inference time is longer by 0.38s. Therefore, the
good SLR performance and shorter inference time demonstrate the
efficiency of designed RTG.

To verify the effectiveness of S-GCN, we first show the effect of
different number of GCN units. As shown in Table 4, as the number
of GCN units increases, the inference time increases while the SLR
performance first increases and then decreases. The reason may
be that the over-smoothing phenomenon in deep GCNs [32, 37]
will decrease the distinctiveness of node features, which leads to
performance degradation of SLR. According to Table 4, the model
achieves the lowest WER (i.e., 19.37% WER on dev set) with 6 GCN
units, and achieves the 19.63% WER with 4 GCN units. But the
model takes 6.95s to process 200 frames (28.8 fps) with 6 GCN units
while taking 6.27s (31.9 fps, i.e., larger than the default frame rate
30 fps and satisfying real-time requirement) to process 200 frames
with 4 GCN units. Thus, we design our S-GCN with 4 GCN units

Table 5: Ablation study of structural re-parameterization on
PHOENIX14T dataset. Note: ‘w/o’: without, ‘SR’: structural
re-parameterization.

PHOENIX14T DEV TEST Time(s) Model
WER WER Edge(200) Size FLOPs Params

w/o SR 19.63 20.01 12.04 88.1 266.9 21.65
RTG-Net 19.63 20.01 6.27 80.9 244.5 19.88

Table 6: SLT performance when using different training data.
‘R’ represents ROUGE, and ‘B1-4’ denotes BLEU-1 to BLEU-4.

PHOENIX14T DEV TEST
R B1 B4 R B1 B4

Labeled gloss 44.31 45.85 18.90 43.19 44.53 19.91
Predicted gloss 47.61 48.53 22.69 47.34 46.84 22.75
Labeled+Predicted 50.18 51.17 25.95 50.04 50.87 25.87

to achieve the best balance of SLR performance and computation
overhead.

In addition, we replace all ResGraphConv blocks in S-GCN mod-
ule with mainstream temporal model, i.e., LSTM, BiLSTM and
transform layer [45], while replacing each GCN unit with ST-GCN
unit [49]. Specifically, we concatenate the features from four nodes
as the input for LSTM, BiLSTM and transform layer, while keeping
the dimension of the hidden layer unchanged. According to Table 3,
when using alternative LSTM, BiLSTM, transform layer, and ST-
GCN units, the WER increases by 26.32%, 20.21.1%, 9.21% and 3.13%
in test set, respectively. Besides, the inference time by adopting
LSTM, BiLSTM, transformer layer, and ST-GCN units increases by
4.27, 14.23, 11.59 and 9.38 seconds respectively, when compared
with S-GCN. It indicates that the designed S-GCN is essential for
real-time sign language processing on edge devices and contributes
to a better performance with lower computation overhead.

To verify the effectiveness of both RTG and S-GCN on feature
representation, we randomly select one sample in PHOENIX14T test
set and visualize the feature distribution of S-GCN by t-SNE [44],
as shown in Figure 6. In Figure 6(a), the initial feature distribution
of consecutive frames in one video shows discontinuity, indistin-
guishability and irregularity, while S-GCN can distinguish features
of each frame as shown in Figure 6(b) and 6(c). Furthermore, as
features pass through deeper GCN units, feature distributions in
each node show continuity, distinguishability and unique pattern,
as shown in Figure 6(d) and 6(e), which indicates that designed
RTG and S-GCN can learn the continuous changes, discriminative
representations and regularity of signs in one video.

3) Effect of structural re-parameterization: We show the ablation
study on structural re-parameterization in Table 5. The results show
that after applying structural re-parameterization, the designed
RepBlocks (shown in Section 3.3) can efficiently reduce inference
time. Besides, the performance of simplified model is equivalent to
that of the original model.

4) Effect of data augmentation on translation: In Table 6, we show
the performance when using different training data. When adding
predicted gloss sequence into training corpus (‘Labeled+Predicted’),
the ROUGE score increases from 44.31% to 50.18% on test set, com-
pared with the method only using the labeled training samples
provided by dataset (‘Labeled gloss’), which demonstrates that the
added gloss-sentence pairs can improve model performance.
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Table 7: Comparison on PHOENIX14T dataset. Note: OM:‘OUT OF MEMORY’. Edge(200)/GPU(200) means the inference time of
200 frames on Microsoft Surface Pro 6/Tesla V100 GPU. 200 is the max length of a video.

PHOENIX14T DEV TEST Time(s) Model
R B1 B2 B3 B4 R B1 B2 B3 B4 Edge(200) GPU(200) Size FLOPs Params

TSPNet [30] - - - - - 34.96 36.10 23.12 16.68 13.41 OM - 559.0 2250.9 70.98
H+M+P [5] 45.90 - - - 19.50 43.60 - - - 18.30 - - - - -
S2G2T [4] 44.14 42.88 30.30 23.02 18.40 43.80 43.29 30.29 22.82 18.13 43.38 0.16 1658.8 336.8 100.01
(G)S2(G+T) [6] - 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.31 OM 0.17 159.7 152.3 31.24
DeepHand [38] - - - - - 38.05 38.50 25.64 18.59 14.56 49.15 0.16 290.0 167.6 91.18
STMC-T [57] 48.24 47.60 36.43 29.18 24.09 46.65 46.98 36.09 28.70 23.65 130.2 0.39 435.0 1578.2 111.13
HST-GNN [23] - 46.10 33.40 27.50 22.60 - 45.20 34.70 27.10 22.30 - - - - -
SimulSLT [50] 49.21 47.76 35.33 27.85 22.85 49.23 48.23 35.59 28.04 23.14 62.69 0.72 390.0 616.4 41.24
STMC-Tran [52] 48.70 48.27 35.20 27.47 22.47 46.77 48.73 36.53 29.03 24.00 OM 0.40 435.0 1579.3 136.33
BN-TIN [55] 50.29 51.11 37.90 29.80 25.94 49.54 50.80 37.75 29.72 24.32 94.67 0.86 598.0 532.3 117.82
RTG-Net 50.18 51.17 37.95 29.88 25.95 50.04 50.87 37.95 29.74 25.87 6.33 0.15 103.0 244.9 24.75

Table 8: Comparison on PHOENIX14 dataset.

PHOENIX14 DEV TEST Time(s) Model
WER Del/Ins WER Del/Ins Edge(200) GPU(200) Size FLOPs Params

Align [42] 37.1 12.9/2.6 36.7 13.0/2.5 28.44 0.25 668.0 25.3 167.93
SBD-RL [48] 28.6 9.9/5.6 28.6 8.9/5.1 71.75 0.11 219.0 2332.6 57.43
Re-sign [29] 27.1 -/- 26.8 -/- 48.87 0.19 219.0 309.9 51.15
DNF [12] 23.1 7.3/3.3 22.9 6.7/3.3 69.50 0.16 309.0 367.5 58.91
FCN [10] 23.7 -/- 23.9 -/- - - - - -
Boosting [40] 21.3 7.3/2.7 21.9 7.3/2.4 19.63 0.19 685.0 499.5 173.24
STMC-R [56] 21.1 7.7/3.4 20.7 7.4/2.6 121.40 0.16 252.0 1573.8 66.25
RTG-Net 20.0 8.4/1.5 20.1 8.6/1.7 6.27 0.11 80.9 244.5 19.88

Inference time analysis:We evaluate the inference time of a
sign language video with 300 frames on CSL and 200 frames on
both PHOENIX14 and PHOENIX14T datasets on Surface Pro6, and
then average the time of 100 runs as the reported inference time.
As shown in Table 2 and Table 7, RGT-Net takes 6.27 seconds to
get the recognized gloss sequence and takes 6.33 seconds to get
the translated sentence for 200 frames. The experimental results
prove that the processing speed of RTG-Net for SLT achieves 30
frames per second (fps) and satisfies the real-time requirement on
edge devices, i.e., the processing speed of RTG-Net is larger than
the frame rate.

4.4 Comparison
We also compare RTG-Net with existing approaches in SLR or SLT.
Here, the recognition/translation performance was reported by the
existing work itself. While for resource and computation overhead
(i.e., model size, FLOPs, quantity of parameters, inference time),
they are provided by our re-implemented model for reference, since
those information was usually not provided by the existing work.

Evaluation on PHOENIX14T dataset: According to Table 7,
our RTG-Net can achieve the state-of-the-art performance com-
pared with the existing models. Specifically, the best BLEU1 (i.e.,
50.87%) is achieved by our RTG-Net on the test set. Besides, our
RTG-Net can achieve the lowest inference time (i.e., 6.33s), which
is only about one twentieth of that of STMC-T. Consequently, only
RTG-Net can balance the translation performance and computation
overhead well, and satisfies the real-time requirement.

Evaluation on PHOENIX14 dataset: As shown in Table 8,
our RTG-Net can achieve the comparable performance with the
existing approaches on PHOENIX14 dataset for SLR. Specifically, on
the ‘TEST’ set, the lowest WER 20.1% is achieved by our RTG-Net.
Besides, when moving to the inference time, the time of STMC-R is

Table 9: Comparison on CSL dataset.

CSL SPLIT I SPLIT II Time(s) Model
WER WER Edge(300) GPU(300) Size FLOPs Params

PyramidBi [31] 9.1 59.4 - - - - -
LSHAN [22] 17.3 - OM OM 1747.6 6179.6 458.13
STMC-R [56] 2.1 28.6 OM OM 252.0 1573.8 66.24
Align [42] - 32.7 39.4 0.35 668.0 1303.3 167.93
SBD-RL [48] - 26.8 OM - 219.0 2332.6 57.43
RTG-Net 0.8 23.2 9.19 0.16 72.7 204.7 17.73

much larger than (i.e., more than 20 times) that of our RTG-Net, and
only our RTG-Net can achieve real-time sign language processing
on edge devices (i.e., processing speed is larger than 30 fps).

Evaluation on CSL dataset: Following previous work [17], we
compare our network with existing approaches on two settings:
Split I- signer independent test and Split II-unseen sentences test. As
shown in Table 9, our RTG-Net achieves the best performance, i.e.,
0.8% WER on Split I and 23.2% WER on Split II. Besides, we can
also achieve the smallest inference time (i.e., 9.19s), which indicates
that our RTG-Net can achieve SOTA performance with limited
computation overhead.

5 CONCLUSION
In this paper, we propose a RTG-Net for real-time video-based
SLR and SLT on edge devices. Specifically, to achieve the real-time
requirement, we design a shallow graph convolutional network
and adopt structural re-parameterization to reduce computation
overhead. To guarantee the SLR or SLT performance, we extract
key regions, and then construct a region-aware temporal graph, to
improve the feature representation of a sign language video. Exten-
sive experimental results demonstrate that RTG-Net can achieve
real time SLR or SLT on edge devices, while having a comparable
performance with the existing approaches.
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A APPENDIX
A.1 The detailed information of CSL,

PHOENIX14 and PHOENIX14T
Here, we provide more detailed information about the datasets. For
CSL, the frame rate is 30 fps and the frame’s resolution is 1280×720
pixels, we first crop each frame around its center to get a regionwith
500×500 pixels, then resize the cropped region to 224×224 pixels.
In regard to the detailed settings for Split I and Split II in CSL, we
follow the same settings with previous work [17]. (a) Split I- signer
independent test: we select the sign language videos generated by
40 signers and that generated by the other 10 signers as the training
set and test set, respectively. The training and testing sets have

Table 10: Comparison of SLR performance on PHOENIX14
dataset

.

Model DEV TEST
WER del/ins WER del/ins

DeepHand [27] 47.1 16.3/4.6 45.1 15.2/4.6
SubUNet [3] 40.8 14.6/4.0 40.7 14.3/4.0
Staged-Opt [11] 39.4 13.7/7.3 38.7 12.2/7.5
Re-Sign [29] 27.1 -/- 26.8 -/-
DCN [41] 38.0 8.3/4.8 37.3 7.6/4.8
Weakly [25] 26.0 -/- 26.0 -/-
DNF(Flow) [12] 23.1 7.3/3.3 22.9 6.7/3.3
DPD+TEM [54] 35.6 9.5/3.2 34.5 9.3/3.1
Align-iOpt [42] 37.1 12.6/2.6 36.7 13.0/2.5
CMA [40] 21.3 7.3/2.7 21.9 7.3/2.4
SFL [36] 24.9 10.3/4.1 25.3 10.4/3.6
SBD-DL [48] 28.6 9.9/5.6 28.6 8.9/5.,1
STMC [56] 21.1 7.7/3.4 20.7 7.4/2.6
SMKD [19] 20.8 6.8/2.5 21.0 6.3/2.3
FCN [10] 23.7 -/- 23.9 -/-
VAC [35] 21.2 7.9/2.5 22.3 8.4/2.6
C2SLR [58] 20.5 -/- 20.4 -/-
RTG-Net 20.0 8.4/1.5 20.1 8.6/1.7

Table 11: Comparison of SLR performance on PHOENIX14T
dataset.

Model DEV TEST
WER WER

Weakly [25] 22.1 24.1
STMC [56] 19.6 21.0
SFL [36] 25.1 26.1
SLT [6] 24.6 24.5
FCN [10] 23.3 25.1
SMKD [19] 20.8 22.4
C2SLR [58] 20.2 20.4
RTG-Net 19.6 20.0

the same sentences with no overlap of signers. (b) Split II-unseen
sentences test: we select the sign language videos corresponding to
94 sentences as the training set and the videos corresponding to the
remaining 6 sentences as the test set. The signers and vocabulary
of the training set and test set are the same, while the sentences
have no overlaps. In regard to PHOENIX14 and PHOENIX14T, the
frame rate is 25fps, the frame’s resolution is 210×260 pixels, and
each frame is resized to 224×224 pixels.

A.2 Comparison
Evaluation of SLR performance on PHOENIX14 dataset: As
shown in Table 10, we show the comparison results with existing
methods on PHOENIX14 dataset. Compared with Table 8 in the
main paper, results in this table contain extra models that have not
been re-implemented, thus we don’t show metrics like: model size
(MB), FLOPs (G), the quantity of parameters (M) and inference time
(Seconds) here. According to Table 10, our RTG-Net can achieve
the state-of-the-art performance on SLR task.

Evaluation of SLR performance on PHOENIX14T dataset:
In Table 7 of the main paper, we only show the comparison of SLT
results on PHOENIX14T dataset. Here, we show the comparison
of SLR results. As shown in Table 11, our RTG-Net can achieve
comparable performance with the existing approaches.

Evaluation of SLR and SLT performance on CSL-daily
dataset: There is another sign language dataset that can be used
for both SLR and SLT, called CSL-daily [55]. The CSL-daily dataset
contains 18401, 1077 and 1176 labeled videos for training, validation
and testing, and it has both gloss annotations with a vocabulary
of 2000 different signs and Chinese translation annotations with a
vocabulary of 2343 words.

There is a little difference between the official dataset [55] and
our received dataset, as shown in Table 12. Still, as shown in Table 13
and Table 14, our RTG-Net can outperform the state-of-the-art SLR
models and achieves a comparable performance with the state-of-
the-art SLT methods on CSL-daily.

Table 12: Difference between the official CSL-daily dataset
and our received dataset.

Model Official Ours
Train Dev Test Train DEV TEST

frames 2,227,178 124,530, 153,074 2,185,328 131,931 150,248
resolution 1920×1080 ← same 512 × 512 ← same
type video ← same images ← same
FPS 30 ← same None ← same

Table 13: Comparison of SLR performance on CSL-daily.

Model DEV TEST
WER del/ins WER del/ins

SL-Transf [6] 33.1 10.3/4.4 32.0 9.6/4.1
BN-TIN [55] 33.6 13.9/3.4 33.1 13.5/3.0
RTG-Net 30.5 12.8/3.5 30.4 13.3/2.3
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SLR

w/o Face: donnerstag ist es suedost weiter wechselhaft nordwest mehr ** sonne
w/o Lhand: donnerstag ist ** suedost weiter wechselhaft nordwest mehr freundlich **
w/o Rhand: donnerstag ** es suedost weiter wechselhaft west mehr freundlich sonne
w/o Frame: donnerstag ** ** suedost weiter wechselhaft nordwest mehr freundlich **
Allconnect: donnerstag ** es suedost weiter wechselhaft nordwest mehr freundlich sonne
RTG-Net: donnerstag ** es suedost weiter wechselhaft nordwest mehr freundlich sonne
GT: donnerstag ist es suedost weiter wechselhaft nordwest mehr freundlich sonne

SLT

Labeled: am donnerstag ** ** und im südosthälfte im wechselhaft nach sonne später ** es freundlicher
Predicted: am donnerstag ist es ** im südosthälfte ** wechselhaft nach westen ** ist es freundlich
L+P: am donnerstag ist es in im südosthälfte weiterhin wechselhaft nach nordwesten hin ist es freundlicher
GT: am donnerstag ist es in der südosthälfte weiterhin wechselhaft nach nordwesten hin ist es freundlich

Figure 7: Qualitative analysis on PHOENIX14T dataset. Note ‘w/o’:without, ‘Labled’: Labeled gloss, ‘Predicted’: Predicted gloss,
‘L+P’:Labeled gloss+Predicted gloss, ‘GT’:Ground Truth, ‘**’: blank token.

Table 14: Comparison of SLT performance with other models on CSL-daily.

Model PHOENIX14T DEV PHOENIX14T TEST
ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

SL-Luong [4] 40.18 41.46 25.71 16.57 11.06 40.05 41.55 25.73 16.54 11.03
SL-Transf [6] 44.18 46.82 32.22 22.49 15.94 44.81 47.09 32.49 22.61 16.24
BN-TIN [55] 49.49 51.46 37.23 27.51 20.80 49.31 51.42 37.26 27.76 21.34
RTG-Net 49.12 51.57 37.65 27.19 20.81 50.15 51.33 37.37 27.81 21.74

A.3 Qualitative Analysis
In Figure 7, we show an example of PHOENIX14T test set. The
image sequence in top part shows that our model can efficiently
extract keypoints and crop key regions, the gloss sequence inmiddle
part shows that each designed component contributes to the higher
SLR performance, and the word sequence in the bottom part shows
that proposed data augmentation on gloss-sentence pairs in Section
3.5 can further improve SLT performance.

A.4 Limitation Analysis
Unsegmented sign video: Like the most existing models, our
model is trained under benchmark datasets where sign sentence
segmentation is done by datasets. For an un-segmented long video,

it is necessary to segment the long video in the sentence level, since
that the most current models can hardly perform SLR and SLT on
videos without sentence segmentation. However, the sentence seg-
mentation remains an unsolved research problem. Thus, despite the
good SLR, SLT performance provided by our model and other mod-
els, there are still many problems to be solved before technological
readiness for real-life applications.

Re-implemented results: In Section 4.4 of the main paper, met-
rics of existing models like: model size, FLOPs, quantity of parame-
ters and inference time are provided by our re-implemented models,
considering the source codes of the current models are generally
not publicly available. We have tried our best to re-implement their
models according to their papers and make their results comparable
to ours. Still, this information is for reference.
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