
Skeleton-Aware Neural Sign Language Translation
Shiwei Gan, Yafeng Yin∗, Zhiwei Jiang, Lei Xie, Sanglu Lu

State Key Laboratory for Novel Software Technology, Nanjing University, China
gsw@smail.nju.edu.cn,yafeng@nju.edu.cn,jzw@nju.edu.cn,lxie@nju.edu.cn,sanglu@nju.edu.cn

ABSTRACT
As an essential communication way for deaf-mutes, sign languages
are expressed by human actions. To distinguish human actions for
sign language understanding, the skeleton which contains position
information of human pose can provide an important cue, since
different actions usually correspond to different poses/skeletons.
However, skeleton has not been fully studied for Sign Language
Translation (SLT), especially for end-to-end SLT. Therefore, in this
paper, we propose a novel end-to-end Skeleton-Aware neural Net-
work (SANet) for video-based SLT. Specifically, to achieve end-to-
end SLT, we design a self-contained branch for skeleton extraction.
To efficiently guide the feature extraction from video with skele-
tons, we concatenate the skeleton channel and RGB channels of
each frame for feature extraction. To distinguish the importance of
clips, we construct a skeleton-based Graph Convolutional Network
(GCN) for feature scaling, i.e., giving importance weight for each
clip. The scaled features of each clip are then sent to a decoder
module to generate spoken language. In our SANet, a joint training
strategy is designed to optimize skeleton extraction and sign lan-
guage translation jointly. Experimental results on two large scale
SLT datasets demonstrate the effectiveness of our approach, which
outperforms the state-of-the-art methods. Our code is available at
https://github.com/SignLanguageCode/SANet.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.

KEYWORDS
Sign Language Translation; Skeleton; Neural Network

ACM Reference Format:
Shiwei Gan, Yafeng Yin, Zhiwei Jiang, Lei Xie, Sanglu Lu. 2021. Skeleton-
Aware Neural Sign Language Translation. In Proceedings of the 29th ACM
International Conference onMultimedia (MM ’21), October 20–24, 2021, Virtual
Event, China. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3474085.3475577

∗Yafeng Yin is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00
https://doi.org/10.1145/3474085.3475577

(a) Sign: doing (b) Sign: liver

Figure 1: In sign languages, the same hand gesture in differ-
ent positions can have different meanings. The blue points
and lines represent the skeleton.

1 INTRODUCTION
Sign language has been widely adopted as a communication way
for deaf-mutes. To build the bridge between deaf-mutes and hear-
ing people, the research work on sign language understanding
emerged and the existing work can mainly be categorized as Sign
Language Recognition (SLR) [21, 29, 45] and Sign Language Transla-
tion (SLT) [5, 15, 25]. Earlier, the sign language-related work usually
focused on SLR, which aims at recognizing isolated sign as word
or expression [12, 24, 37], or recognizing continuous signs as cor-
responding word sequence [4, 10, 13, 21]. However, the SLR work
neglected the difference between sign language and spoken lan-
guage on grammatical rules, i.e., the recognized word sequence may
be not grammatically correct, thus hindering the understanding
of sign language. Recently, due to the advancement of annotated
dataset and deep learning technology, SLT has attracted people’s
attention. SLT is a more challenging task and its objective is to trans-
late sign language to spoken language, while requiring that the
translation results conform to the grammatical rules and linguistic
characteristics of the target spoken language.

In regard to SLT, the prior work tended to decompose SLT into
two stages, i.e., recognizing continuous signs as word sequence,
and then utilizing language models to construct sentences with
the words [3, 9]. However, the two-stage methods usually required
gloss1 annotation, which was a labor-intensive task and needed
specialists. Recently, due to the development of deep learning tech-
nology, Camgoz et al. approached SLT as a neural machine trans-
lation task [5], and introduced the encoder-decoder network and
attention mechanism for end-to-end SLT for the first time. After
that, Camgoz et al. introduced transformer networks for end-to-
end SLT from videos [7]. When considering the modality difference
between video and language in SLT, feature representation was
adopted, i.e., the video is represented as features which are later
translated to language. However, in the existing neural-based meth-
ods, the feature representation of video was mainly consisted of
full-frame [5, 15, 22] or local-area [6] features, while the skeleton
information which reflects the important spatial structure of human

1Here, ‘gloss’ means a gesture with its closest meaning in natural languages [10].

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4353

https://github.com/SignLanguageCode/SANet
https://doi.org/10.1145/3474085.3475577
https://doi.org/10.1145/3474085.3475577
https://doi.org/10.1145/3474085.3475577

pose in sign languages has not been fully studied. In fact, the skele-
ton can be used to distinguish signs with different human poses
(i.e., different relative positions of hands, arms, etc), especially for
the signs which use the same hand gesture in different positions to
represent different meanings, as shown in Figure 1. Therefore, it is
meaningful to introduce skeleton information into SLT.

To utilize skeletons for SLT, there emerged some work recently
[6, 14], which advanced the research of skeleton assisted SLT. How-
ever, the existing research often had the following problems. First,
obtaining the skeletons often required an external device [14] or
extra offline preprocessing [6], which hindered the end-to-end SLT
from videos. Second, the videos and skeletons were used as two
independent data sources for feature extraction, i.e., not fused at
the initial stage of feature extraction, thus the video-based feature
extraction may be not efficiently guided/enhanced with the skele-
ton information. Third, each clip (i.e., a short segmented video) was
usually treated equally, while neglecting the different importance
of meaningful (e.g, sign-related) clips and unmeaninngful (e.g, end
state) clips. Among the problems, the third one exists not only in
skeleton-assisted SLT, but also in much SLT work.

To address the above three problems, we propose a Skeleton-
Aware neural Network (SANet). Firstly, to achieve end-to-end SLT,
SANet designs a self-contained branch for skeleton extraction. Sec-
ondly, to guide the video-based feature extraction with skeletons,
SANet concatenates the skeleton channel and RGB channels for
each frame, thus the features extracted from images/videos will be
affected by skeleton. Thirdly, to distinguish the importance of clips,
SANet constructs a skeleton-based Graph Convolutional Network
(GCN) for feature scaling, i.e., giving importance weight for each
clip. Specifically, SANet consists of four components, i.e., FrmSke,
ClipRep, ClipScl, LangGen. At first, FrmSke is used to extract skele-
ton from each frame and frame-level features for a clip by convo-
lutions and deconvolutions. Then, ClipRep is used to enhance clip
representation by adding skeleton channel. After that, ClipScl is
used to scale the clip representation by a skeleton-based Graph
Convolutional Network (GCN). Finally, with the scaled features of
clips, LangGen is used to generate spoken language with sequence
to sequence learning. In addition, we design a joint optimization
strategy for model training and achieve end-to-end SLT.

We make the following contributions in this paper.

• We propose a Skeleton-Aware neural Network (SANet) for
end-to-end SLT, where a self-contained branch is designed
for skeleton extraction and a joint training strategy is de-
signed to optimize skeleton extraction and sign language
translation jointly.

• We concatenate the extracted skeleton channel and RGB
channels in source data level, thus can highlight human
pose-related features and enhance the clip representation.

• We construct skeleton-based graphs and use graph convolu-
tional network to scale the clip representation, i.e., weighting
the importance of each clip, thus can highlight meaningful
clips while weakening unmeaningful clips.

• We conduct extensive experiments on two large-scale public
SLT datasets. The experimental results demonstrate that our
SANet outperforms the state-of-the-art methods.

2 RELATEDWORK
The existing research work on sign languages can be mainly cate-
gorized into SLR and SLT, where SLR can be further classified into
isolated SLR and continuous SLR. In this section, we review the
related work on isolated SLR, continuous SLR, and SLT.

Isolated Sign Language Recognition (ISLR): The isolated
SLR aims at recognizing one sign as word or expression [2, 12, 24]
which is similar to gesture recognition [27, 42] and action recog-
nition [32, 40]. The early methods tended to select features from
videos manually, and introduced Hidden Markov Model (HMM)
[12, 16] to analyze the gesture sequence of a sign (i.e., human ac-
tion) for recognition. However, the manually-selected features may
limit the recognition performance. Therefore, in recent years, the
deep learning-based approaches were introduced for isolated SLR.
The approaches utilized neural networks to automatically extract
features from videos [17]), Kinect’s sensor data [36], or moving tra-
jectories of skeleton joints [24] for isolated SLR, and often achieved
a better performance.

Continuous Sign Language Recognition (CSLR): Continu-
ous SLR aims at recognizing a sequence of signs to the correspond-
ing word sequence [21, 28, 45], thus continuous SLR is more chal-
lenging than isolated SLR. To realize CSLR, the traditional methods
like DTW-HMM [44] and CNN-HMM [21] introduced temporal
segmentation and Hidden Markov Model (HMM) to transform con-
tinuous SLR to isolated SLR. Considering the possible errors and
annotation burden in temporal segmentation, the recent deep learn-
ing based methods [18] applied sequence to sequence learning for
continuous SLR. They learned the correspondence between two
sequences from weakly annotated data in an end-to-end manner.
However, many approaches tended to adopt Connectionist Tem-
poral Classification (CTC) loss [13, 20, 43, 45] which requires that
source and target sequences have the same order. In fact, the sign
sequence in sign language and the word sequence in spoken lan-
guage can be different [5], thus the approaches for continuous SLR
are not suitable for SLT.

Sign Language Translation (SLT): SLT aims to translate sign
languages into spoken languages. Traditional methods [3, 9] usually
decomposed SLT into two stages, i.e., continuous SLR and text-to-
text translation. The two-stage methods had both gloss annotations
and sentence annotations, thus can be optimized in two stages for
a better performance [5]. However, annotating glosses requires spe-
cialists and is a labor-intensive task. Recently, due to the advance-
ment of public datasets in sentence-level annotations [5, 11, 18]
and deep learning technology, there emerged a few end-to-end
SLT approaches. Camgoz et al. [5] introduced the encoder-decoder
framework to realize end-to-end SLT. Guo et al. [14, 15] proposed
the hierarchical-LSTM model for end-to-end SLT. Camgoz et al. uti-
lized the transformer networks [38] to jointly solve SLR and SLT[7].
Li et al. developed a temporal semantic pyramid encoder and a
transformer decoder for SLT [22]. These neural-based approaches
often adopted encoder and decoder for SLT.

To represent the sign languages, the existing neural-based SLT
methods mainly focused on extracting full-frame [5, 15, 22] or local-
area features [6, 46] from the video. There was only a little work
paying attention on skeleton information (i.e., human pose) for
SLT. Specifically, HRF [14] collected skeletons with a depth camera,

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4354

Video

RGB channels

𝑾𝑾 × 𝑯𝑯 × 𝟑𝟑

…

…

ClipRep

ClipScl

Clip i

…

Clip 1

…

Clip m 𝒄𝒄 × 𝑾𝑾 × 𝑯𝑯 × 𝟑𝟑

𝑾𝑾 × 𝑯𝑯 × 𝟏𝟏

𝒄𝒄 × 𝑾𝑾 × 𝑯𝑯 × 𝟒𝟒i1 i2 ic

Skeleton graph

Scaling
Clip i …

My wife
is a

teacher

Inference

C
C Concatenation

Frame-level features Clip-level features

Scale factor

MC MemoryCell

BiLSTM MC
3×

LSTM

Attention

LangGen

Skeleton channel

Fused features

FrmSke

Scaled features

RGBS channels

𝒊𝒊𝒄𝒄 Frames
i1 i2 ic

Adding

Figure 2: The SANet consists of FrmSke, ClipRep, ClipScl and LangGen,which are used for extracting skeletons and frame-level
features, enhancing clip representation, scaling features and generating sentences.

while Camgoz et al. [6] extracted skeleton from video with exiting
tool in an offline stage. Then, they parallelly input RGB videos with
skeletons to neural network for feature extraction. The external
device or offline preprocessing of skeleton extraction hindered
the end-to-end SLT from videos. Besides, the existing approaches
tended to fuse videos and skeletons in extracted features and give
the same importance of each clip, which may limit the performance
of feature representation. Differently, we extract skeleton with
a self-contained branch to achieve end-to-end SLT. Besides, we
fuse videos and skeletons in source data by concatenating skeleton
channel and RGB channels, and construct a skeleton-based GCN to
weight the importance of each clip.

3 PROPOSED APPROACH
In SLT, when given a sign language video X = (f1, f2, . . . , fu) with
u frames, our objective is to learn the conditional probabilityp(Y |X)

of generating a spoken language sentence Y = (w1,w2, . . . ,wv)

with v words. The sentence with highest probability p(Y |X) is
chosen as the translated spoken language.

To realize end-to-end SLT, we propose a Skeleton-Aware neural
Network (SANet), which consists of FrmSke, ClipRep, ClipScl and
LangGen. As shown in Figure 2, a sign language video is segmented
into consecutive equal-length clips with 50% overlap. For a clip, we
first use FrmSke to extract skeleton from each frame and frame-level
clip features. Then, we concatenate the skeleton channel and RGB
channels of each frame in the clip, and adopt ClipRep to extract clip-
level features. The frame-level features and clip-level features are
added to get the fused features of a clip. Meanwhile, we utilize the
skeletons in a clip to construct a spatial-temporal graph and adopt
ClipScl to calculate the scale factor, which will be multiplied with
the fused features to get the scaled feature vector of a clip. Finally,
the scaled features of all clips are sent to LangGen for generating
the spoken language.

3.1 Frame-Level Skeleton Extraction
A frame can capture the specific gesture in sign language, thus
containing the spatial structure of human pose and detailed infor-
mation in face, hands, fingers, etc. Therefore, we split the clip into
frames, and propose FrmSke module to extract skeleton and frame-
level features. As shown in Figure 3, we select a compressed variant

𝑾𝑾 × 𝑯𝑯 × 𝟑𝟑

Frame i1 Frame i2 Frame ic

…
F

…

𝑾𝑾 × 𝑯𝑯 × 𝟏𝟏

i1 i2 ic

Convolutional layer

Deconvolutional layer

Fully connected layer

Pointwise convolutional layer

Deconv1 Deconv2

Conv1 Conv2 Conv3 Conv4 Conv5

P P

F

P

Frame-level features

Skeletons

Figure 3: FrmSke extracts skeleton from each image and
frame-level features of each clip.

of VGG model [33] as the backbone network for FrmSke. In the
compressed VGG model, the number of channels in convolutional
layers is reduced to one fourth of the original one, to reduce the
memory requirement and make the model work on our platform.

Skeleton extraction: As shown in Figrue 3, to extract the skele-
ton map from a frame, two parallel deconvolutional networks are
used to upsample high-to-low resolution representations [34] after
the Conv3 and Conv4 layers. Specifically, Deconv1 layer adopts
one 3×3 deconvolution with the stride 2 for 2× upsampling, while
Deconv2 layer adopts two consecutive 3×3 deconvolutions with
the stride 2 for 4× upsampling. Then, the pointwise convolutional
layer and element-sum operation are added after deconvolutional
layers to generateK heatmaps, where each heatmapMH

k , k ∈ [1,K]
contains one keypoint (with the highest heatvalue) of the skeleton.
After that, we generate the skeleton (i.e., a 2D matrix)MS by adding
the corresponding elements in K heatmaps. Here, K is set to 14 and
means the number of keypoints from nose, neck, both eyes, both
ears, both shoulders, both elbows, both wrists and both hips.

Frame-level clip representation: As shown in Figure 3, the
convolutions Conv1 to Conv5 are first used to extract feature maps
from each frame of a clip. Then, the feature maps are concatenated,
flatten and sent to a fully connected layer to get a feature vector
Fm with Nm = 4096 elements of the clip.

3.2 Channel Extended Clip Representation
A video clip with several consecutive frames can capture the short
action (i.e., continuous/dynamic gestures) during sign languages.

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4355

Clip i

𝒄𝒄 × 𝑾𝑾 × 𝑯𝑯 × 𝟑𝟑

…

𝑾𝑾 × 𝑯𝑯 × 𝟏𝟏

i1 i2 ic

C

𝒄𝒄 × 𝑾𝑾 × 𝑯𝑯 × 𝟒𝟒

Conv
3D P3D P3D-A

𝟒𝟒 ×

Residual
Unit

𝟑𝟑 ×

FA

Frame ikFrame ik

RGB RGBS

Fully connected layer

Average pooling

Clip-level features

Skeletons

P3D-A P3D-B P3D-C
F

A

Figure 4: ClipRep extracts clip-level features, where each
frame of the clip is extended to four channels by concate-
nating skeleton channel and RGB channels.

Therefore, we propose ClipRepmodule to track the dynamic changes
of human pose and extract the clip representation. As shown in
Figure 4, we first extend the channels of each frame by concate-
nating the extracted skeleton channel and original RGB channels,
and then adopt Pseudo 3D Residual Networks (P3D) [30] to extract
clip-level features.

Channel extension with skeleton: We use the skeleton map
(i.e., a 2D matrix) as the fourth channel, and concatenate it with
original RGB channels of each frame, to get the RGBS frame with
four channels, as shown in Figure 4. After that, the clip with RGBS
frames will be used for clip-level feature extraction.

Enhanced clip representation: Based on the RGBS frame se-
quence of a clip, we introduce the P3D block [30] to extract the
features of the clip, where the P3D is first adopted for SLT. For the
P3D block, it is consisted of one (2D) spatial filer (1× 3 × 3), one
(1D) temporal filter (3× 1× 1), and two pointwise filters (1× 1 × 1).
Combining the filters in different ways can get different modules
(i.e., P3D-A, P3D-B, P3D-C) for P3D. In ClipRep (shown in Figure 4),
after 3D-convolution and P3D blocks, the residual units, average
pooling and fully connected layer will be used to get the feature
vector Fc with Nc = 4096 elements for the clip.

To verify whether the added skeleton channel can enhance fea-
ture representation, we visualize the intermediate feature map (i.e.,
after the first P3D block) in ClipRep without or with using skeleton
channel in Figure 5(a) and Figure 5(b), respectively. The areas with
brighter colors in Figure 5(b) indicate that the added skeleton chan-
nel can highlight the features related to sign language, e.g., gesture
changes and human pose, thus enhancing clip representation.

3.3 Skeleton-Aware Clip Scaling
In a short-time clip, the human action can correspond to a mean-
ingful sign, a less important transition action, an unmeaningful end
state, etc. Thus the importance of each clip for SLT can be different.
To track the human action in a clip and weight the importance
of each clip, we propose ClipScl module, which first constructs a
skeleton-based graph and applies a Graph Convolutional Network
(GCN) [41] to generate a scale factor, and then scales the feature
vector of each clip with the scale factor.

Skeleton-based GCN: To track the dynamic changes of hu-
man action in a short clip, we construct the skeleton-based graph,
which can describe the moving trajectories of keypoints in the
skeleton [31, 41]. Specifically, for a clip with c frames, we first con-
struct a skeleton-based graph G = (V , E) with the node set V and

(a) Intermediate feature maps ‘NOT’ using skeleton

(b) Intermediate feature maps using skeleton

Figure 5: Intermediate featuremaps after the first P3D block
without or with using skeleton channel. In each case, we
show 4 examples selected from 16 frames in a clip.

ST-GCN Unit FM S
𝟕𝟕 ×

GraphConvConv2d Conv2d

Fully connected layer

Max pooling

F

M

SigmoidS

Scale factor

Skeleton graph

Figure 6: ClipScl constructs skeleton-based graph and uses
GCN to calculate the scale factor, which is used for weight-
ing the importance of each clip.

edge set E. Suppose the keypoints of the ith skeleton in a clip are
Vi = (υi1 ,υi2 , . . . ,υiK), i ∈ [1, c]. Here, υi j , j ∈ [1,K] means the
jth keypoint/node in the ith skeleton, while K = 14 means the
number of keypoints in a skeleton. Then we can get the node set
V = {υi j , i ∈ [1, c], j ∈ [1,K]}. In regard to the edge set, it includes
the intra-skeleton edge set Ea = {υipυiq |(p,q) ∈ S} where S means
the set of naturally connected body joints in a skeleton and the
inter-skeleton edge set Ee = {υipυjp |i, j ∈ [1, c], |i − j | = 1} (i.e.,
edge between the corresponding nodes of two adjacent skeletons),
as shown in Figure 6. For each node in the constructed skeleton-
based graph, its coordinate vector (x,y) in the frame is used as its
initial feature vector υf .

With the skeleton-based graph,we then adopt Graph Convolu-
tional Network (GCN) to calculate the scale factor (i.e., importance
weight) of a clip. Specifically, we design ClipScl, which consists of
7 layers of spatial-temporal graph convolution (ST-GCN) units [41],
while decreasing the channel number of ST-GCN by a factor of
0.25 to reduce the memory requirement of the model, as shown in
Figure 6. Then, we use the max pooling and a fully connected layer
to get the feature vector, which will be passed to a sigmoid function

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4356

…

…

Clip sequence

Meaningful clips with signs Transition clip End state Padded clipsInitial state Transition clip

Figure 7: Visualization of the scale factor for each clip. Meaningful clips with signs have larger scale factors, while unmean-
ingful clips have lower scale factors.

to get the scale factor sf , i.e., a value belonging to [0, 1].

sf = Siдmoid(ST −GCN+(V f , E)) (1)

Here,V f is feature vector set of node setV , ST −GCN+(·) denotes
the combination of 7 layers ST-GCN units, max pooling and a fully
connected layer, Siдmoid(·) denotes the sigmoid function.

Fused feature scaling: For each clip, we get the frame-level
feature vector Fm , clip-level feature vector Fc and the scale factor
sf . First, we fuse Fm and Fc with element addition ⊕ to get the
fused feature vector. Then, we scale the fused feature vector with
multiplication operation ⊗ to get the scaled feature vector Ff , as
shown below.

Ff = (Fm ⊕ Fc) ⊗ sf (2)
In Figure 7, we show the calculated scale factor sf for each clip,
where clips with meaningful signs (i.e., clips in the green rectangle)
have larger sf . It means that the designed ClipScl module can effi-
ciently track the dynamic changes of human pose with skeletons
and distinguish the importance of different clips, i.e., ClipScl can
highlight meaningful clips while weakening unmeaningful clips.

3.4 Spoken Language Generation
After getting the scaled feature vector of each clip, we propose
LangGen, which adopts the encoder-decoder framework [35] and
attention mechanism [1] to generate the spoken language, as shown
in Figure 2.

BiLSTM Encoder with MemoryCell: We use three-layered
BiLSTMs and propose a novel MemoryCell to connect adjacent BiL-
STM layers for encoding. Specifically, given a sequence of scaled
clips’ feature vectors z1:n , we first get the hidden states H l =

(hl1,h
l
2, . . . ,h

l
n) after the lth BiLSTM layer. Then, we design Memo-

ryCell to change the dimensions of hidden states and provide the
appropriate input for the following layer, as shown below.

hl+10 = tanh(W · hln + b) (3)

whereW and b are weight and bias of the fully connected layer, hln
is the final output hidden state of the lth layer, hl+10 is input as the
initial hidden state of the (l + 1)th layer.

LSTM Decoder:We use one LSTM layer as the decoder to de-
code the word step by step. Specifically, the decoder utilizes LSTM
cells, a fully-connected layer and a softmax layer to output the
prediction probability pt , j , i.e., the probability that the predicted
word ŷt at the t th time step is the jth word in vocabulary. At the be-
ginning of decoding, ŷ0 is initialized with the start symbol “[SOS]”.

At the t th time step, the decoder predicts the word ŷt . The decoder
stops decoding until the occurrence of the symbol “[EOS]”.

3.5 Joint Loss Optimization
To optimize skeleton extraction and sign language translation jointly,
we design a joint loss L, which consists of skeleton extraction loss
Lske and SLT loss Lsl t (y, ŷ).

The skeleton extraction loss Lske is calculated as follows, where
MH ∈ R3,MG ∈ R3 denote the predicted heatmap and the ground-
truth heatmap, respectively. Here, K , h,w are the number of key-
points, the height and width of a heatmap. For each ground-truth
heatmap, it contains a heating area, which is generated by applying
a 2D Gaussian function with 1-pixel standard deviation [34] on the
keypoint estimated by OpenPose [8].

Lske =
1
K

K∑
k

h∑
i

w∑
j
(MH

k ,i , j −MG
k ,i , j)

2 (4)

The SLT loss Lsl t (y, ŷ) is the cross entropy loss function, ŷ is the
predicted word sequence and y is the ground-truth word sequence
(i.e., labels). The calculation of Lsl t (y, ŷ) is shown below, where
T means the max number of time steps in decoder and V means
the number of words in vocabulary. yt , j is an indicator, when the
ground-truth word at the t th time step is the jth word in vocabulary,
yt , j = 1. Otherwise, yt , j = 0. pt , j means the probability that the
predicted word ŷt at the t th time step is the jth word in vocabulary.

Lsl t (y, ŷ) = −

T∑
t=1

V∑
j
yt , j loд(pt , j) (5)

Based on Lske and Lsl t (y, ŷ), we can calculate the joint loss L
as follows, where α is a hyper-parameter and used to balance the
ratio of Lske and Lsl t . We set α to 1 at the beginning of training
and change it to 0.5 in the middle of training.

L = αLske + Lsl t (y, ŷ) (6)

4 EXPERIMENT
4.1 Datasets
There are two public SLT datasets that are often used, one is the
CSL dataset [18] which contains 25K labeled videos with 100 chi-
nese sentences filmed by 50 signers, and the other one is a German
sign language dataset: the RWTH-PHOENIX-Weather 2014T [5]
which contains 8257 weather forecast samples from 9 signers. The

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4357

Table 1: Ablation study on CSL dataset. Note: without:
‘w/o’, skeleton: ‘ske’, channel: ‘chl’, graph: ‘gph’, frame:
‘frm’, MemoryCell: ‘MC’, feature: ‘fea’. ‘all-ske’ refers to all
skeleton-related components including skeleton extraction
branch, skeleton channel and skeleton-based GCN.

Model Time(s) ROUGE BLEU- 1 BLEU-2 BLEU-3 BLEU-4

w/o all-ske 0.467 0.951 0.953 0.939 0.927 0.916
w/o ske-chl 0.489 0.956 0.958 0.946 0.935 0.924
w/o ske-gph 0.472 0.966 0.967 0.957 0.947 0.939

w/o frm-fea 0.480 0.952 0.954 0.941 0.928 0.916
w/o clip-fea 0.242 0.928 0.921 0.898 0.882 0.879

w/o MC 0.489 0.960 0.962 0.950 0.939 0.929

SANet 0.499 0.996 0.995 0.994 0.992 0.990

PHOENIX14T corpus has two-stage annotations: sign gloss anno-
tations with a vocabulary of 1066 different signs for continuous
SLR and German translation annotations with a vocabulary of 2877
different words for SLT. For CSL dataset, we split it into 17K, 2K
and 6K for training, validation and testing respectively. The split
for CSL dataset was widely adopted in existing work [14, 15, 18].
For PHOENIX14T, it has been officially split into 7096, 519 and 642
samples for training, validation, and testing respectively.

4.2 Experimental Setting
In this subsection, we will describe the detailed setting in SANet, in-
cluding data preprocessing, module parameters, model training, and
model implementation. For the data preprocessing, when given a
sign language video, each frame of the video is reshaped as 200×200
pixels and Gaussian noises are added for data augmentation. The
clip is segmented by using a sliding window where the window size
c is set to 16 frames and the stride size s is set to 8 frames. Consider-
ing that sign language videos are variable-length, the max/default
length of a sign language video is set to 300 frames and 200 frames
for CSL dataset and PHOENIX14T dataset, respectively. For the
module LangGen, the dimensions of BiLSTM and LSTM layers are
both 1024. Dropout with rate 0.5 is used after embedding in De-
coder/LSTM layer. For model training, the batch size is set to 64.
Adam optimizer [19] is used to optimize model parameters with
an initial learning rate of 0.001. The learning rate is decreased by
a factor of 0.5 every S steps and S is set to the number of training
samples. For the model implementation, SANet is implemented
with PyTorch1.6 and trained for 100 epochs on 4 NVIDIA Tesla
V100 GPUs.

In regard to performancemetrics, we adopt ROUGE-L F1-Score [23]
and BLEU-1,2,3,4 [26], which are often used to measure the quality
of translation in machine translation and also used in the existing
SLT work [5–7]. For a fair comparison, we use the evaluation codes
of ROUGE-L and BLEU-1,2,3,4 provided by the RWTH-PHOENIX-
Weather 2014T dataset [5].

4.3 Model Performance
To verify the effectiveness of the proposed Skeleton-Aware neural
Network (SANet), we perform ablation study, time analysis and
qualitative analysis for SANet.

Table 2: Ablation study on PHOENIX14T dataset. Note: with-
out: ‘w/o’, skeleton: ‘ske’, channel: ‘chl’, graph: ‘gph’, frame:
‘frm’, MemoryCell: ‘MC’, feature: ‘fea’. ‘all-ske’ refers to all
skeleton-related components including skeleton extraction
branch, skeleton channel and skeleton-based GCN.

Model Time(s) ROUGE BLEU- 1 BLEU-2 BLEU-3 BLEU-4

w/o all-ske 0.358 0.513 0.542 0.391 0.294 0.225
w/o ske-chl 0.370 0.520 0.549 0.403 0.304 0.233
w/o ske-gph 0.371 0.515 0.545 0.394 0.295 0.226

w/o frm-fea 0.376 0.518 0.547 0.396 0.299 0.230
w/o clip-fea 0.214 0.516 0.541 0.390 0.291 0.220

w/o MC 0.369 0.538 0.563 0.418 0.316 0.243

SANet 0.383 0.548 0.573 0.424 0.322 0.248

Ablation Study: To estimate the contributions of our designed
components for SLT, we perform the ablation study on two datasets.
Specifically, the components include skeleton-related components
(i.e., all skeletons, skeleton channel, skeleton-based GCN), feature-
related components (i.e., frame-level features, clip-level features)
and encoding related component (i.e., MemoryCell). Here, ‘all skele-
tons’ means the combination of components related to skeletons,
including the branch generating skeletons and the parts using skele-
tons (i.e., skeleton channel and skeleton-based GCN). In the experi-
ment, we remove only one type of component at a time and list the
corresponding performance in Table 1 and Table 2.

According to Table 1 and Table 2, each designed component has
made positive contribution to higher performance. For the skeleton-
related components, when removing all skeletons, skeleton channel,
or skeleton-based GCN, the performance on the metric ROUGE
score drops by 4.5%, 4.0%, 3.0% on CSL dataset and 3.5%, 2.8%, 3.3%
on PHOENIX14T dataset respectively. It indicates that our skeleton-
related designs are very helpful in improving performance. That is
to say, the proposed self-contained branch can efficiently extract the
skeleton, while the designed skeleton channel and skeleton-based
GCN can efficiently enhance the feature representation of each clip.

For the feature-related components, they are the important source
for encoding and play an important role in SLT. When frame-level
features and clip-level features are removed respectively, the per-
formance on the metric ROUGE score drops by 4.4%, 6.8% on CSL
dataset and 3.0%, 3.2% on PHOENIX14T dataset respectively. It in-
dicates that frame-level features and clip-level features also have a
great impact on SLT performance. This is because the frame-level or
clip-level features contain rich information extracted from frames
or clips. Thus extracting features from frames/clips is a common
approach for feature representation in the existing work. However,
instead of only extracting features from frames or clips individu-
ally, this paper also contributes a design by fusing the frame-level
features and clip-level features for a clip. Besides, our work makes
a further step on the existing SLT work by introducing skeletons to
enhance the feature representation of clips, thus further improve
the SLT performance.

In regard to the encoding-related component (i.e., MemoryCell),
when MemoryCell is removed, the performance on the metric
ROUGE score drops by 3.6% onCSL dataset and 1.0% on PHOENIX14T

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4358

vom nordmeer zieht ein kräftiges tief heran und bringt uns ab den morgenstunden heftige schneefälle zum teil auch gefrierenden regen

am
am

am

am
am
am

am

atlantik
atlantik
westen
westen
westen
atlantik
atlantik

zieht
zieht
zieht
zieht
zieht
zieht
zieht

ein
ein
ein
ein
ein
ein
ein

kräftiges
kräftiges

neues

neues
neues
tief

kräftiges

tief

tief
tief

hoch
hoch

hoch
hoch

über

heran

zur
das
das
das

heran

und
und
und
und
und
und
und

bringt

bringt
bringt

lenkt
lenkt
lenkt
lenkt

uns
uns
uns
uns
uns
uns
uns

zum
zum
zum
zum
zum
zum
zum

und
morgen
den
den
den
und
den

morgenstunden
morgenstunden

morgenstunden
morgenstunden
morgenstunden
morgenstunden
morgenstunden

heftige
heftige
heftige
sonntag
sonntag
heftige
heftige

schneefälle
schauer

schneefälle
schneefälle
schneefälle

schauer
schneefälle

auch
im

heute
zum
zum
im

bringt

teil
teil
teil
teil
teil
teil
teil

auch
auch
auch
auch
auch
auch
auch

gefrierenden
gefrierenden
gefrierenden
gefrierenden

mit
kräftigen

mit

regen

regen
regen
regen
regen
regen
regen

Label
SANet

w/o all-ske

w/o ske-gph
w/o ske-chl

w/o MC

w/o img-fea
w/o clip-fea

ROUGE
55.0%
50.0%
65.0%
60.0%
60.0%
65.0%
80.0%

Figure 8: A qualitative analysis of different components used for SLT on the example from PHOENIX14T test set. (Note: the
word order in sign language and that in spoken language may be not temporally consistent.)

dataset respectively. It indicates that the designed MemoryCell can
efficiently change the dimensions of hidden states between BiL-
STM layers and provide the appropriate input for LSTM Decoder,
thus contributes to a certain performance improvement for SLT.
Therefore, our proposed skeleton-related designs bring a good con-
tribution for SLT, while the overall framework of SANet and other
designed components also benefit SLT.

Inference Time Analysis: To evaluate the time efficiency of
designed components, in Table 1 and Table 2, we show the inference
time of SLT by removing one type of designed component. Here,
inference time means the duration of translating the sign language
in a video to the spoken language. In the experiment, we evaluate
the inference time of a sign language video with 300 frames on CSL
dataset and a sign language video with 200 frames on PHOENIX14T
dataset on a single GPU, and then average the time of 100 runs as the
reported inference time. When keeping all components of SANet,
the average inference time is 0.499 seconds for CSL dataset and 0.383
seconds for PHOENIX14T dataset. When removing any designed
component, the interference time decreases. According to Table 1
and Table 2, the clip-level feature extraction introduces much time
cost, since 3D convolutions have expensive computational cost.
While for the skeleton-related components and MemoryCell, they
only have a little effect on the overall inference time.

Qualitative Analysis: In this experiment, we show an example
of SLT on a sign language video sample from PHOENIX14T test set,
to provide a qualitative analysis. As shown in Figure 8, the last row
means the ground truth of SLT, the second row from the bottom
means the SLT result of the proposed SANet, while other rowsmean
the SLT results by removing the designed components of SANet.
If the ith word in the SLT result is different from the ith ground-
truth word, it is an error and marked with orange color. According
to Figure 8, the proposed SANet achieves the best performance,
while removing any designed component will lead to more errors.
It demonstrates that the proposed framework and all the designed
components contribute to a higher performance for SLT.

4.4 Comparisons
Evalutation onCSL dataset:We compare SANet with existing ap-
proaches on two settings. (a) Split I - signer independent test: we
select the sign language videos generated by 40 signers and that gen-
erated by the other 10 signers as the training set and test set, respec-
tively. The sentences of training set and test set are the same, but

the signers have no overlaps. (b) Split II - unseen sentences test:
we select the sign language videos corresponding to 94 sentences
as the training set and the videos corresponding to the remaining 6
sentences as the test set. The signers and vocabulary of the training
set and test set are the same, while the sentences have no overlaps.
In Table 3, we show the SLT performance on Split I and Split II, and
also compare our SANet with the following existing approaches: (1)
S2VT [39] belongs to a standard two-layers stacked LSTM archi-
tecture which is used to translate video to text. (2) S2VT(3-layer)
extends the S2VT from two-layers LSTM to three-layers LSTM. (3)
HLSTM [15] is a hierarchical LSTM based encoder-decoder model
for SLT. (4)HLSTM-attn [15] adds the attention mechanisms over
the previous HLSTM. (5) HRF-Fusion [14] is a hierarchical adap-
tive recurrent network which mines variable-length key clips and
applies attention mechanisms, by using both RGB videos and skele-
ton data from Kinect.

As shown in Table 3, on Split I, whatever the performance metric
is, the proposed SANet achieves the best performance. Specifically,
the proposed SANet achieves 99.6%, 99.4%, 99.3%, 99.2% and 99.0%
on ROUGE, BLEU-1, BLEU-2, BLEU-3 and BLEU-4 respectively,
which outperform the existing approaches. When compared with
S2VT, the SANet can increase the ROUGE, BLEU-1, BLEU-2, BLEU-
3 and BLEU-4 by 9.2%, 9.2%, 10.7%, 11.3% and 11.6%, respectively.
When moving to Split II, the performance drops a lot. Take our
SANet as an example, the ROUGE score on Split II drops by 31.5%.
This is because translating the unseen sentences, i.e., the words in
the sentence exist in the training set while the sentence does not
occur in the training set, can be more challenging and it is difficult
for SLT. However, our SANet still outperforms the state-of-the-art
approaches and achieves 68.1%, 69.7%, 41.1%, 26.8% and 18.1% on
ROUGE, BLEU-1, BLEU-2, BLEU-3 and BLEU-4, respectively. When
compared with the existing approach HRF-Fusion [14], our SANet
can increase ROUGE by 23.2%.

Evaluation on PHOENIX14T dataset: We compare SANet
with the following existing approaches: (1) TSPNet [22] intro-
duces multiple segments of sign language video in different gran-
ularities and uses Transformer decoder for SLT. (2) H+M+P [6]
uses a multi-channel transformer architecture, by fusing hand-
area videos, mouth-area videos and extracted poses from videos.
(3) Sign2Gloss→Goss2Text [5] adopts a classic encoder-decoder
architecture, and it is trained in two stages (i.e., gloss stage and
sentence stage) independently. (4) Sign2Gloss2Text [5] adopts the

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4359

Table 3: Comparisons with other approaches on CSL dataset under signer-independent test and unseen-sentences test.

Model Split I Split II
ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

S2VT [39] 0.904 0.902 0.886 0.879 0.874 0.461 0.466 0.258 0.135 -
S2VT(3-layer) [39] 0.911 0.911 0.896 0.889 0.884 0.465 0.475 0.265 0.145 -
HLSTM [15] 0.944 0.942 0.932 0.927 0.922 0.481 0.487 0.315 0.195 -
HLSTM-attn [15] 0.951 0.948 0.938 0.933 0.928 0.503 0.508 0.330 0.207 -
HRF-Fusion [14] 0.994 0.993 0.992 0.991 0.990 0.449 0.450 0.238 0.127 -
SANet 0.996 0.994 0.993 0.992 0.990 0.681 0.697 0.411 0.268 0.181

Table 4: Comparison with other approaches on RWTH-PHOENIX-Weather 2014T dataset

Model PHOENIX14T DEV PHOENIX14T TEST
ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

TSPNet [22] - - - - - 0.349 0.361 0.231 0.169 0.134
H+M+P [6] 0.459 - - - 0.195 0.436 - - - 0.183
Sign2Gloss→Goss2Text [5] 0.438 0.411 0.291 0.221 0.179 0.435 0.415 0.295 0.222 0.178
Sign2Gloss2Text [5] 0.441 0.429 0.303 0.230 0.184 0.438 0.433 0.304 0.228 0.181
(Gloss)Sign2Text [7] - 0.455 0.326 0.253 0.207 - 0.453 0.323 0.248 0.202
(Gloss)Sign2(Gloss+Text) [7] - 0.473 0.344 0.271 0.224 - 0.466 0.337 0.262 0.213
DeepHand [25] - - - - - 0.381 0.385 0.256 0.186 0.146
SANet 0.542 0.566 0.415 0.312 0.235 0.548 0.573 0.424 0.322 0.248

previous encoder-decoder architecture, but it is trained jointly. (5)
(Gloss)Sign2Text [7] utilizes a transformer based architecture for
SLT. (6) (Gloss)Sign2(Gloss+Text) [7] also utilizes a transformer
based architecture, but jointly learns CLSR and SLT at the same
time. (7) DeepHand [25] adopts the encoder-decoder architecture
and introduces a pretrained hand shape recognizer for SLT.

As shown in Table 4, we provide the performance of each ap-
proach on both the validation set (i.e., ‘DEV’) and test set (i.e.,
‘TEST’). Whatever on ‘DEV’ set or ‘TEST’ set, the existing ap-
proaches often have the lower performance. For example, the best
ROUGE and BLEU-4 score achieved by the existing approach is
less than 46% and 23%, respectively. This may be because of the
high diversity, large size of vocabulary and limited number of train-
ing samples in the PHOENIX14T dataset. However, our proposed
SANet further improves the SLT performance and achieves the best
performance, e.g., 54.2% of ROUGE and 23.5% of BLEU-4 score on
‘DEV’ set while 54.8% of ROUGE and 24.8% of BLEU-4 score on
‘TEST’ set, which outperform all the existing approaches.

5 DISCUSSION AND FUTUREWORK
Keypoints of skeleton: In this paper, we extract 14 keypoints to
represent the skeleton, while ignoring the fine-grained keypoints
in fingers, mouth, etc. The main reason is that it is difficult to accu-
rately extract fine-grained keypoints from the limited-resolution
frames in SLT dataset (e.g., the frame in PHOENIX14T dataset is
only 210×260 pixels). However, we consider that accurately extract-
ing more fine-grained keypoints can advance SLT performance. In
the future, we will make further research on skeleton extraction.

More comparisons from different perspectives: In the ex-
periment, we compare the proposed SANet with the existing ap-
proaches in terms of ROUGE and BLEU-1,2,3,4, which are used to

evaluate the translation quality. For a fair comparison, the reported
results on these metrics are provided by the original paper. Without
complete original/released codes, we do not make further compar-
isons (e.g., inference time) with the approaches. However, in future
work, we will try to explore more comprehensive comparisons from
different perspectives with the existing approaches.

Particularity of CSL dataset: The CSL dataset is a special
dataset, where the word order of sign language is temporally con-
sistent with that of spoken language, thus it can be used for SLR
task [18, 45] as well as SLT task [14, 15]. In this paper, CSL dataset is
solved from the aspect of SLT and only SLT methods are considered
for comparisons.

6 CONCLUSION
In this paper, we propose a Skeleton-Aware neural Network (SANet)
for end-to-end SLT. Specifically, we first use a self-contained branch
to extract the skeleton from each frame, and then enhance the fea-
ture representation of a clip by adding the skeleton channel and
scaling (i.e., weighting the importance) the feature vector with a
designed skeleton-based GCN. Besides, we design a joint optimiza-
tion strategy for training. The experimental results on two large
scale datasets demonstrate the effectiveness of SANet.

7 ACKNOWLEDGMENTS
This work is supported by National Key R&D Program of China
under Grant No. 2018AAA0102302; National Natural Science Foun-
dation of China under Grant Nos. 61802169, 61872174, 61832008,
61906085, 61902175; JiangSu Natural Science Foundation under
Grant Nos. BK20180325, BK20190293. This work is partially sup-
ported by Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization.

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4360

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Kshitij Bantupalli and Ying Xie. 2018. American sign language recognition using
deep learning and computer vision. In 2018 IEEE International Conference on Big
Data (Big Data). IEEE, 4896–4899.

[3] Jan Bungeroth and Hermann Ney. 2004. Statistical sign language translation.
In Workshop on representation and processing of sign languages, LREC, Vol. 4.
Citeseer, 105–108.

[4] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, and Richard Bowden. 2017.
Subunets: End-to-end hand shape and continuous sign language recognition. In
ICCV. IEEE, 3075–3084.

[5] N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden. 2018. Neural Sign
Language Translation. In CVPR. 7784–7793. https://doi.org/10.1109/CVPR.2018.
00812

[6] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and Richard Bowden. 2020.
Multi-channel Transformers for Multi-articulatory Sign Language Translation.
arXiv preprint arXiv:2009.00299 (2020).

[7] Necati Cihan Camgoz, Oscar Koller, Simon Hadfield, and Richard Bowden. 2020.
Sign Language Transformers: Joint End-to-end Sign Language Recognition and
Translation. In CVPR. 10023–10033.

[8] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime multi-
person 2d pose estimation using part affinity fields. In CVPR. 7291–7299.

[9] Xiujuan Chai, Guang Li, Yushun Lin, Zhihao Xu, Yili Tang, Xilin Chen, and Ming
Zhou. 2013. Sign language recognition and translation with kinect. In IEEE Conf.
on AFGR, Vol. 655. 4.

[10] Runpeng Cui, Hu Liu, and Changshui Zhang. 2019. A deep neural framework
for continuous sign language recognition by iterative training. IEEE Transactions
on Multimedia 21, 7 (2019), 1880–1891.

[11] Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram, Kenneth
DeHaan, Florian Metze, Jordi Torres, and Xavier Giro-i Nieto. 2021. How2Sign:
A Large-scale Multimodal Dataset for Continuous American Sign Language. In
Conference on Computer Vision and Pattern Recognition (CVPR).

[12] K. Grobel and M. Assan. 1997. Isolated sign language recognition using hidden
Markov models. In SMC, Vol. 1. 162–167 vol.1. https://doi.org/10.1109/ICSMC.
1997.625742

[13] Dan Guo, Shuo Wang, Qi Tian, and Meng Wang. 2019. Dense Temporal Convo-
lution Network for Sign Language Translation.. In IJCAI. 744–750.

[14] Dan Guo, Wengang Zhou, Anyang Li, Houqiang Li, and Meng Wang. 2019.
Hierarchical recurrent deep fusion using adaptive clip summarization for sign
language translation. TIP 29 (2019), 1575–1590.

[15] Dan Guo, Wengang Zhou, Houqiang Li, and Meng Wang. 2018. Hierarchical lstm
for sign language translation. In AAAI, Vol. 32.

[16] Dan Guo, Wengang Zhou, Meng Wang, and Houqiang Li. 2016. Sign language
recognition based on adaptive hmms with data augmentation. In 2016 IEEE
International Conference on Image Processing (ICIP). IEEE, 2876–2880.

[17] Jie Huang, Wengang Zhou, Houqiang Li, and Weiping Li. 2018. Attention-based
3D-CNNs for large-vocabulary sign language recognition. IEEE Transactions on
Circuits and Systems for Video Technology 29, 9 (2018), 2822–2832.

[18] Jie Huang, Wengang Zhou, Qilin Zhang, Houqiang Li, and Weiping Li. 2018.
Video-based sign language recognition without temporal segmentation. In AAAI.

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Oscar Koller, Cihan Camgoz, Hermann Ney, and Richard Bowden. 2019. Weakly
supervised learning with multi-stream CNN-LSTM-HMMs to discover sequential
parallelism in sign language videos. TPAMI (2019).

[21] Oscar Koller, Sepehr Zargaran, and Hermann Ney. 2017. Re-sign: Re-aligned
end-to-end sequence modelling with deep recurrent CNN-HMMs. In CVPR. 4297–
4305.

[22] Dongxu Li, Chenchen Xu, Xin Yu, Kaihao Zhang, Benjamin Swift, Hanna Suomi-
nen, and Hongdong Li. 2020. TSPNet: Hierarchical Feature Learning via Temporal
Semantic Pyramid for Sign Language Translation. In Advances in Neural Infor-
mation Processing Systems, Vol. 33.

[23] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[24] Tao Liu, Wengang Zhou, and Houqiang Li. 2016. Sign language recognition with
long short-term memory. In ICIP. IEEE, 2871–2875.

[25] Alptekin Orbay and Lale Akarun. 2020. Neural sign language translation by
learning tokenization. arXiv preprint arXiv:2002.00479 (2020).

[26] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In ACL. 311–318.

[27] Lionel Pigou, Mieke Van Herreweghe, and Joni Dambre. 2017. Gesture and sign
language recognition with temporal residual networks. In Proceedings of the IEEE
International Conference on Computer Vision Workshops. 3086–3093.

[28] Junfu Pu, Wengang Zhou, Hezhen Hu, and Houqiang Li. 2020. Boosting Continu-
ous Sign Language Recognition via Cross Modality Augmentation. In Proceedings
of the 28th ACM International Conference on Multimedia. 1497–1505.

[29] Junfu Pu, Wengang Zhou, and Houqiang Li. 2019. Iterative alignment network
for continuous sign language recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4165–4174.

[30] Zhaofan Qiu, Ting Yao, and Tao Mei. 2017. Learning spatio-temporal representa-
tion with pseudo-3d residual networks. In CVPR. 5533–5541.

[31] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. 2019. Skeleton-based action
recognition with directed graph neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 7912–7921.

[32] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-
works for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014).

[33] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[34] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. 2019. Deep high-resolution
representation learning for human pose estimation. In CVPR. 5693–5703.

[35] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In NIPS. 3104–3112.

[36] Ao Tang, Ke Lu, Yufei Wang, Jie Huang, and Houqiang Li. 2015. A real-time hand
posture recognition system using deep neural networks. ACM Transactions on
Intelligent Systems and Technology (TIST) 6, 2 (2015), 1–23.

[37] Dominique Uebersax, Juergen Gall, Michael Van den Bergh, and Luc Van Gool.
2011. Real-time sign language letter and word recognition from depth data. In
2011 IEEE international conference on computer vision workshops (ICCVWorkshops).
IEEE, 383–390.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. 5998–6008.

[39] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence-video to text. In
ICCV. 4534–4542.

[40] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. 2016. Temporal segment networks: Towards good practices for
deep action recognition. In European conference on computer vision. Springer,
20–36.

[41] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition. In AAAI.

[42] Siyuan Yang, Jun Liu, Shijian Lu, Meng Hwa Er, and Alex C Kot. 2020. Col-
laborative learning of gesture recognition and 3D hand pose estimation with
multi-order feature analysis. In European Conference on Computer Vision. Springer,
769–786.

[43] Zhaoyang Yang, Zhenmei Shi, Xiaoyong Shen, and Yu-Wing Tai. 2019. SF-Net:
Structured Feature Network for Continuous Sign Language Recognition. arXiv
preprint arXiv:1908.01341 (2019).

[44] Jihai Zhang, Wengang Zhou, and Houqiang Li. 2014. A threshold-based hmm-dtw
approach for continuous sign language recognition. In ICIMCS. 237–240.

[45] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li. 2020. Spatial-Temporal
Multi-Cue Network for Continuous Sign Language Recognition.. In AAAI. 13009–
13016.

[46] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li. 2021. Spatial-temporal
multi-cue network for sign language recognition and translation. IEEE Transac-
tions on Multimedia (2021).

Poster Session 5 MM ’21, October 20–24, 2021, Virtual Event, China

4361

https://doi.org/10.1109/CVPR.2018.00812
https://doi.org/10.1109/CVPR.2018.00812
https://doi.org/10.1109/ICSMC.1997.625742
https://doi.org/10.1109/ICSMC.1997.625742

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed approach
	3.1 Frame-Level Skeleton Extraction
	3.2 Channel Extended Clip Representation
	3.3 Skeleton-Aware Clip Scaling
	3.4 Spoken Language Generation
	3.5 Joint Loss Optimization

	4 Experiment
	4.1 Datasets
	4.2 Experimental Setting
	4.3 Model Performance
	4.4 Comparisons

	5 Discussion and Future Work
	6 Conclusion
	7 Acknowledgments
	References

