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Abstract—Mobile and wearable devices have become more and
more popular. However, the tiny touch screen leads to inefficient
interaction with these devices, especially for text input. In this
article, we propose DynaKey, which allows people to type on
a virtual keyboard printed on a piece of article or drawn on
a desk, for inputting text into a head-mounted camera device
(e.g., smart glasses). By using the built-in camera and gyro-
scope, we capture image frames during typing and detect possible
head movements, then track keys, detect fingertips, and locate
keystrokes. To track the changes of keys’ coordinates in images
caused by natural head (i.e., camera) movements, we introduce
perspective transformation to transform keys’ coordinates among
different frames. To detect and locate keystrokes, we utilize the
variation of fingertip’s coordinates across multiple frames to
detect possible keystrokes for localization. To reduce the time
cost, we combine gyroscope and camera to adaptively track the
keys, and introduce a series of optimizations, such as keypoint
detection, frame skipping, multithread processing, etc. Finally, we
implement DynaKey on Android-powered devices. The extensive
experimental results show that our system can efficiently track
and locate the keystrokes in real time. Specifically, the average
tracking deviation of the keyboard layout is less than 3 pixels
and the Intersection over Union (IoU) of a key in two consec-
utive images is above 93%. The average keystroke localization
accuracy reaches 95.5%.

Index Terms—Camera, dynamic keystroke tracking,
head-mounted device, inertial sensor.

I. INTRODUCTION

RECENT years have witnessed an ever-growing popularity
of mobile and wearable devices, such as smartphones,

smart watches, and smart glasses. These devices usually
impose a small form factor design so that they can be car-
ried by users everywhere conveniently. The portable design
brings much mobility to these devices, but on the other hand
it creates many challenges for human–computer interaction,
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especially for text input. Some of these devices adopt an
on-screen virtual keyboard [1], [2] for text input, but others
may require intelligent methods due to the tiny screen or even
no screen.

Based on the observation that each finger’s typing
movement is associated with a unique keystroke, recognizing
finger movements has been proposed as a novel text input
method, which is achieved by additional wearable sensors
(e.g., finger-mounted sensors [3]–[7]) and incurs an additional
cost. Considering the users’ habits in typing on a common
QWERTY keyboard layout, a projection keyboard [24], [27]
generated by casting the standard keyboard layout onto a
surface via a projector has been proposed, which is used to rec-
ognize keystrokes based on light reflection and depends on the
dedicated equipment for projection. Recently, with the advance
of contactless sensing, recognition of keystrokes can be done
via WiFi signals or acoustic signals. For example, WiFi
channel state information (CSI) signals have been explored
in [8] and [19] to capture keystrokes’ typing patterns, the
built-in microphone of a smartphone has been used in [16]
and [20] to infer keystrokes on a solid surface. However, con-
tactless sensing is usually vulnerable to environmental noises,
hence limiting its performance in real-world applications.
Therefore, the camera-based approaches [26], [29], [30] have
also been proposed to recognize keystrokes on a predefined
keyboard layout using image processing. However, existing
camera-based text input methods assume a fixed camera and
the coordinates of a keyboard layout keep unchanged in the
fixed camera view. In reality, the camera of a head-mounted
device can hardly keep still. Existing methods may not work in
such dynamic moving scenes where the camera will suffer from
unavoidable movements. Specifically, as shown in Fig. 1, head
movements cause camera jitters which lead to changes of key-
board’s coordinate in image frames, and eventually cause the
mismatch between fingertip and key. The limitation of existing
camera-based text input methods strongly motivate the work
in this article.

In this article, we propose a novel scheme named DynaKey
using camera and gyroscope for text input on a virtual key-
board in dynamic moving scenes. DynaKey does not impose
a fixed camera, hence it works in more realistic scenarios.
Fig. 1 illustrates a typical scenario where a user wears a head-
mounted camera device (e.g., smart glasses), while a standard
keyboard layout can be printed on a piece of paper or drawn on
a desk surface. DynaKey combines the embedded camera and
gyroscope to track finger movements and recognize keystrokes
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Fig. 1. Typing on a virtual keyboard in dynamic scenarios. Camera
movements change the keys’ coordinates in image frames and lead to the
mismatch between fingertip and key.

in real time. Specifically, while the user types on a virtual
keyboard, DynaKey utilizes camera to capture image frames
continuously, then detects fingertips and locates keystrokes
using image processing techniques. During the tying process,
when the head movement is detected by gyroscope, DynaKey
needs to track the changes of keyboard coordinate caused by
camera movements. This keyboard tracking is crucial due to
natural head movements in real application scenarios.

The design of DynaKey creates three key challenges that
we aim to address in this article.

The first challenge is how to track changes of keyboard’s
coordinate accurately so that DynaKey is able to adapt to
dynamic moving scenes. In reality, the camera moves nat-
urally along with the head. Such movements will cause
dynamic changes of the camera coordinate system. The differ-
ent camera views and unavoidable image distortion eventually
result in changes of keyboard coordinate in image frames.
An intuitive solution is to re-extract keyboard layout from
each image, but it is costly. In addition, we may not be
able to obtain the keyboard layout from each image prop-
erly due to unavoidable occlusion by hands. Our intuitive idea
asks a fundamental question—can we build a fixed coordi-
nate system no matter how the keyboard coordinate changes?
In DynaKey, we propose a perspective transformation-based
technique that converts any previous coordinate to the current
coordinate system. To obtain appropriate feature point pairs
for facilitating transformation, we propose a keypoint selec-
tion method to dynamically select appropriate cross point pairs
from the keyboard layout, while tolerating the occlusion of
keyboard.

The second challenge is how to detect and locate keystrokes
efficiently and accurately from a single camera view. This
is a nontrivial task due to the lack of depth information of
fingertips from single-camera view. In the setting of a head-
mounted camera and a keyboard located in the front of and
below the camera, the camera view from top and behind can
hardly get the perpendicular distance between the fingertip and
the keyboard plane, i.e., it is difficult to determine whether a
finger is typing and which finger is typing. To address this
challenge, we utilize the variation of a fingertip’s coordinate
across multiple frames to detect a keystroke, i.e., whether a
finger is typing. In addition to the fingertip movement, we fur-
ther match a key’s coordinate with the fingertip’s coordinate
to locate which finger is typing.

The third challenge is how to tradeoff between dynamic
tracking of keyboard and tracking cost for resource-constrained

devices. If the camera does not move or has negligible
movements, tracking keyboard’s coordinate is unnecessary. To
achieve the best tradeoff for resource-constrained head-mounted
devices, we introduce a gyroscope-based lightweight method to
detect non-negligible camera movements, including short-time
sharp movement and long-time accumulated micro movement.
Only the detected non-negligible camera movements will trig-
ger the keyboard tracking module to ensure DynaKey work
dynamically in real time.

In summary, we make three main contributions in this
article.

1) To the best of our knowledge, this article appears the first
work focusing on efficient text input using the built-in
camera of a head-mounted device (e.g., smart glasses) in
dynamic moving scenes. To adapt to the dynamic camera
views, we propose a perspective transformation-based
technique to track the changes of keyboard’s coordinate.
Besides, without the depth information of fingertips in
a single camera view, we utilize the variation of fin-
gertip’s coordinate across multiple frames for keystroke
detection.

2) To ensure the real-time response, DynaKey proposes a
gyroscope-based lightweight design to adaptively detect
the camera movement and remove unnecessary image
processing for keyboard tracking. Besides, we introduce
a series of optimizations, such as keypoint selection,
frame skipping, and multithread processing for image
processing.

3) We implement DynaKey on off-the-shelf Android
devices, and conduct comprehensive experiments to
evaluate the performance of DynaKey. Results show that
the average tracking deviation of keyboard layout is less
than 3 pixels and the Intersection over Union (IoU) [25]
of a key in two consecutive images is above 93%. The
accuracy of keystroke localization reaches 95.5% on
average. The time response is 63 ms and such latency
is below human response time [23].

II. RELATED WORK

Virtual keyboards have been used as an alternative of on-
screen keyboards [1], [2] to support text input for mobile
or wearable devices with small or no screen. These vir-
tual keyboards can be mainly classified into five categories,
i.e., wearable sensor-based, projection-based, WiFi-based,
acoustic-based, and camera-based keyboards.

Wearable Sensor-Based Keyboards: Wearable sensors have
been used to capture the movements of fingers for text input.
iKey [4] utilizes a wrist-worn piezoelectric ceramic sensor
to recognize keystrokes on the back of hand. DigiTouch [5]
introduces a glove-based input device which enables thumb-to-
finger touch interaction by sensing touch position and pressure.
MagBoard [3] leverages the triaxial magnetometer embedded
in mobile phones to locate a magnet on a printed keyboard.
FingerSound [6] utilizes a thumb-mounted ring which con-
sists of a microphone and a gyroscope, to recognize unistroke
thumb gestures for text input. These approaches introduce
additional hardwares to capture typing behaviors.
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Projection-Based Keyboards: Projection keyboards
[24], [27] have been proposed for mobile devices, by
adopting a conventional QWERTY keyboard layout. They
usually require a light projector to cast a keyboard layout
onto a flat surface, and then recognize keystrokes based on
light reflection. This approach requires dedicated equipment.
Microsoft Hololens [13] provides a projection keyboard in
front of a user using a pair of mixed-reality smart glasses.
During text input, the user needs to move her/his head to
pick a key and then make a specific “tap” gesture to select
the character. This tedious process may slow down text input
and affect user experience.

WiFi-Based Keyboards: By utilizing the unique pattern of
CSI in time series, WiFinger [19] is designed to recognize a set
of finger-grained gestures to input text for off-the-shelf WiFi
devices. Similarly, when a user types on a keyboard, WiKey [8]
recognizes the typed keys based on how the CSI value changes
at the WiFi signal receiver. However, the WiFi-based approach
can be easily affected by environments, such as changes of
transceiver’s orientation or location, and unexpected human
motions in surrounding areas. They are often expected
to work in controlled environments, rather than real-world
scenarios.

Acoustic-Based Keyboards: By utilizing the built-in micro-
phones of mobile and wearable devices, acoustic-based key-
boards have been recently proposed. UbiTap [16] presents an
input method by turning the solid surface into a touch input
space, based on the sound collected by the microphones. To
infer the keystroke’s position, it requires three phones to esti-
mate the arrival time of acoustic signals. KeyListener [20]
infers keystrokes on the QWERTY keyboard of the touch
screen by leveraging the microphones of a smartphone, while
it is designed for indirect eavesdropping attacks, the accu-
racy of keystroke inference is usually not sufficient for text
input. UbiK [28] leverages the microphone of a mobile device
to locate the keystrokes, while it requires the user to click
a key with the fingertip and nail margin, which may be not
typical. Some auto speech recognition (ASR) tools [31] are
also designed for text input by decoding the speaker’s voice,
but they can be vulnerable to environmental sounds and not
suitable to work in public space needing to keep quiet.

Camera-Based Keyboards: By using a built-in camera,
TiPoint [18] detects keystrokes for interactions with smart
glasses, it requires a finger to move and click on the mini-
trackball to input a character. However, its input speed and
user experience need further improvement for real applica-
tions. Chang et al. [11] designed a text input system for
HMDs by cutting a keyboard into two parts. Its performance is
almost comparable to that of single-hand text input on tablet
computers. Sun et al. [26] proposed a depth-aware tapping
scheme for VR/AR devices by combining a microphone with a
COTS mono camera. It enables tracking of user’s fingers based
on ultrasound and image frames. Yin et al. [29] leveraged
a built-in camera in mobile device to recognize keystrokes
by comparing the fingertip’s location with a key’s location in
image frames. However, these methods assume that the text
input space has a fixed location in the camera view, i.e., the
coordinates of the keyboard or keys keep unchanged.

Our work is motivated by the recent advance of
camera-based text input methods. We move an important step
toward dynamic scenarios where the camera moves naturally
with user’s head. In our work, the keyboard coordinate in the
camera’s view changes dynamically, creating more challenges
in achieving high accuracy in keystroke localization, and low
latency for resource limited head-mounted devices.

III. OBSERVATIONS

We first conduct our preliminary experiments to study
how the changes of keyboard coordinate affect key track-
ing and keystroke localization in a dynamic scenario. In our
experiments, we use a Samsung Galaxy S9 smartphone as a
head-mounted camera device, as shown in Fig. 2(a). We use
a A4-sized paper keyboard with the Microsoft Hololens [13]
keyboard layout and keep its location unchanged. Unless oth-
erwise specified, the frame rate of camera is set to 30 fps. The
sampling rate of gyroscope is set to 200 Hz.

Observation 1 (Unconscious Head Movements Can Lead
to Large Coordinate Deviations of the Keyboard): As shown
in Fig. 2(a), the head-mounted camera moves along with the
head. The head movements will lead to the dynamic changes of
camera view. When the location of keyboard keeps unchanged,
the camera view changes will lead to the changes of key-
board coordinate in the image frames. As shown in Fig. 2(b),
the article keyboard is represented as K, and the captured
keyboard from the camera view is K1. We take the case
of rotating around the y-axis [marked in Fig. 2(a)] as an
example of head (i.e., camera) movements. When the cam-
era slightly rotates �θ = 5◦ around y-axis anticlockwise,
the image frame changes from x − y plane to x′ − y′ plane,
and the captured keyboard in the image frame changes to K2.
Correspondingly, the location offset of the keyboard achieves
(�dx,�dy) = (78, 27) pixels, which can lead to the mismatch
between coordinates and keys. As shown in the right part of
Fig. 2(b), due to the camera movement, the captured keyboard
in the current image is shown in blue, while that in the orig-
inal image is shown in black. In the current frame, i.e., blue
keyboard, the user types letter “y.” When using the coordinates
of keys in the original frame, it may mismatch letter “h” with
the keystroke.

Observation 2 (Extracting All Keys From Each Image
Suffers From Unavoidable Occlusion of Hands and Has an
Unacceptable Cost of Processing): To track the coordinate
changes of keys, an intuitive solution is to extract keys from
each image frame. However, considering the hand occlusion
which is unavoidable, as shown in Fig. 2(b), it is difficult to
extract each key from the image frame accurately. Besides,
considering the limited resources of a head-mounted device
and the real-time requirement of text input, the processing
cost of extracting keys from each image frame is expensive.
Specifically, we use �t to represent the processing cost of
key extraction from an image frame, i.e., processing an input
image and extracting all keys from the image. In Fig. 2(c), we
show the cost of key extraction in 100 different frames. The
result shows that the processing cost �t ranges from 40 to
60 ms, while the average cost is 49 ms, which is larger than
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(a) (a)

(c) (d) (e)

Fig. 2. Observations about coordinate changes of keys, captured frames for keystrokes, and time cost in image processing. (a) Experimental setup.
(b) Unconscious head movements can lead to the large coordinate deviations of keys. (c) Extracting all keys from each image leads to unacceptable time
cost for real-time systems. (d) Head movements occur occasionally and last for several frames instead of all frames. (e) Frame from camera view can hardly
detect the depth information of fingertips.

the interframe duration (i.e., 33 ms). Therefore, extracting all
keys from each image frame to track the coordinates of keys
may be unacceptable for real applications. More time-efficient
key tracking methods are expected.

Observation 3 (Head Movements Occur Occasionally and
Last for Several Frames Instead of All Frames): According to
Observation 2, extracting all keys in each image can hardly
work. In fact, we find that performing key extraction in each
frame is unnecessary. Although the user’s head moves during
typing, the ratio of head movement duration to the whole typ-
ing duration is small. Fig. 2(d) shows that the head movements
cause the peaks in gyroscope data during a typing process (i.e.,
3 min), the total duration of the three head movements is less
than 1 min. It implies that during the typing process, the coor-
dinates of keys in the image frames keep unchanged for more
than 67% of the time. Consequently, we only need to re-extract
the coordinates of keys when detecting head movements, rather
than performing key extraction in each frame.

Observation 4 (A Frame From Camera View Is Insufficient
to Detect the Depth Information of Fingertips): To decide
whether a keystroke is occurring or not, it is critical to deter-
mine whether the fingertip is pressing on a key. However,
different from the front camera view, the camera view from
top and behind can hardly detect the depth of an object, i.e.,
the perpendicular distance between the fingertip and the key-
board plane. As shown in Fig. 2(e), all fingers hover above the
keyboard. Some fingertips appear above the keys from camera
view, hence it is easy to recognize nonkeystrokes as keystrokes
by mistake. To address the confusion, we may dynamically
track the moving patterns of a fingertip and detect a keystroke
from several frames instead of a single frame. We also need an

Fig. 3. Architecture of DynaKey.

efficient way to distinguish the fingertip pressing a key from
other fingertips.

IV. SYSTEM DESIGN

We now present the design of DynaKey, which provides
a text-input scheme for a head-mounted camera device in
dynamic scenes, as shown in Fig. 1. DynaKey works in real-
istic scenarios where a user types on a virtual keyboard with
natural head movement. The keyboard layout can be printed on
a piece of paper or drawn on a desk surface. Unless otherwise
specified, we use an Android smartphone as the head-mounted
camera device, where the embedded camera is used to cap-
ture user’s typing behaviors, then track and locate keystrokes.
The embedded gyroscope is used to detect head movements.
In regard to the keyboard layout, it is printed on a piece of
paper, as shown in Fig. 2(a).

A. System Overview

Fig. 3 shows the framework of DynaKey. The inputs are
image frames captured by camera and the angular velocity

Authorized licensed use limited to: Nanjing University. Downloaded on May 18,2023 at 09:58:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DynaKey: DYNAMIC KEYSTROKE TRACKING USING HEAD-MOUNTED CAMERA DEVICE 6567

collected by gyroscope, while the output is the character of
the pressed key. Initially, the user keeps the head unchanged
and moves the hand out of the camera view for about 3 s, while
using Key Tracking to detect the keyboard and extract each key
from the initial image frame. When the screen shows “Please
TYPE,” the user begins typing. During the typing process, we
use Key Tracking to select keypoints of images to transform the
coordinates of keys among different frames. At the same time,
we use Adaptive Tracking to analyze the angular velocity of
gyroscope to detect head (i.e., camera) movements, and then
determine whether to update the coordinates of keys or not.
In addition, DynaKey uses Fingertip Detection to segment the
hand region from the frame and detect the fingertips. After
that, we use Keystroke Detection and Localization to detect
the keystroke occurred and locate the keystroke. To ensure
DynaKey work in real time, we adopt three threads to imple-
ment the image capturing, image processing (i.e., key tracking,
fingertip detection, keystroke detection, and localization), and
adaptive tracking in parallel.

B. Key Tracking

Before typing, we first need to extract keys from the image.
With possible head movements, i.e., camera view changes, we
then need to track the coordinates of keys in the following
frames, as mentioned in Observation 1 of Section III. Key
tracking in DynaKey consists of key extraction and coordinate
transformation, as described in the following.

1) Key Extraction: We adopt a common QWERTY
keyboard layout, which is printed in black and white on a
piece of paper, as shown in Fig. 4(a). Given an input image in
Fig. 4(a), we use the Canny edge detection algorithm [10], [29]
to obtain all edges, and then find all possible contours from
detected edges, as shown in Fig. 4(b) and (c) respectively. The
largest contour [i.e., the green contour shown in Fig. 4(c)] with
four corners corresponds to the keyboard, where the corners
are detected based on the angles formed by the consecutive
contour segments, as the red points shown in Fig. 4(d). When
the keyboard location is fixed, i.e., four corner points are
fixed, as shown in Fig. 4(e), we can detect the keys from
the keyboard. Specifically, with small contours [i.e., the red
contours shown in Fig. 4(c)] located in the keyboard, we uti-
lize the area of a key to eliminate pitfall contours and then
extract each key from the keyboard, as shown in Fig. 4(f).
Finally, we map the extracted keys with characters based on
the relative locations among keys, i.e., the known keyboard
layout.

2) Coordinate Transformation: Due to head movements, it
is essential to track the coordinates of keys among different
frames. Besides, the camera view changes also bring in the
distortion of keyboard in images, as the two captured quadri-
laterals P0P1P3P2 and Q0Q1Q3Q2 shown in Fig. 5. To tolerate
the camera movement and image distortion, we propose a per-
spective transformation-based method to track the coordinates
of keys.

Perspective Transformation: As shown in Fig. 5, for a
fixed point Gi in the physical space, when we obtain
its projection point (Xi, Yi) in the jth frame, perspective

(a) (b) (c)

(f)(e)(d)

Fig. 4. Process of extracting keys. (a) Input frame. (b) Edge detection result.
(c) All detected contours. (d) Corner point detection. (e) Keyboard with corner
points. (f) Key extraction result.

Fig. 5. Principle of perspective transformation.

transformation [21] can use a transformation matrix C =
(C00, C01, C02; C10, C11, C12; C20, C21, C22) to calculate its
projection (U′

i , V ′
i ) in the kth frame. Therefore, when the

paper keyboard is fixed, we can use the known keyboard/key
locations in the previous frames to infer the keyboard/key loca-
tions in the following frames, without keyboard detection and
key extraction. Specifically, with the known projection point
(Xi, Yi) in the jth frame, we first use C to calculate the 3-D
coordinate (Ui, Vi, Wi) related to (Xi, Yi) in the physical space,
as described in (1). We then introduce a division operation to
obtain its corresponding projection point (U′

i , V ′
i ) in the kth

frame, as described as follows:

⎡
⎣

Ui

Vi

Wi

⎤
⎦ =

⎡
⎣

C00 C01 C02
C10 C11 C12
C20 C21 C22

⎤
⎦ ·

⎡
⎣

Xi

Yi

1

⎤
⎦ (1)

U′
i = Ui

Wi
= C00 · Xi + C01 · Yi + C02

C20 · Xi + C21 · Yi + C22

V ′
i = Vi

Wi
= C10 · Xi + C11 · Yi + C12

C20 · Xi + C21 · Yi + C22
. (2)

Here, the projection points of the keyboard or keys in the
previous frame can be obtained through key extraction, as
mentioned in Section IV-B1. Thus, the main challenge lies
in the calculation of transformation matrix C, which will be
described below.

Keypoint Selection: In the transformation matrix C, C22
is a scale factor and usually set to C22 = 1, thus we only
need to calculate the other eight variables, which can be
solved by selecting four nonlinear feature point pairs [e.g.,
Pi(Xi, Yi) and Qi(U′

i, V ′
i )(i ∈ [0, 3]) shown in Fig. 5]. The

specific formula for calculating C with four feature point pairs
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(a)

(b)

Fig. 6. Feature points selection and time cost of FLANN based matcher.
(a) Keypoint selection by FLANN-based matcher. (b) Time cost of two
keypoint selection methods.

(a) (b)

(c) (d)

Fig. 7. Hands move on the keyboard and lead to the different occlusion in the
process of pressing “I” and “Y.” (a) Pressing “I.” (b) Leaving “I.” (c) Pressing
“Y.” (d) Leaving “Y.”

is shown in (3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X0 Y0 1 0 0 0 −X0 ∗ U′
0 −Y0 ∗ U′

0

X1 Y1 1 0 0 0 −X1 ∗ U′
1 −Y1 ∗ U′

1

X2 Y2 1 0 0 0 −X2 ∗ U′
2 −Y2 ∗ U′

2

X3 Y3 1 0 0 0 −X3 ∗ U′
3 −Y3 ∗ U′

3

0 0 0 X0 Y0 1 −X0 ∗ V ′
0 −Y0 ∗ V ′

0

0 0 0 X1 Y1 1 −X1 ∗ V ′
1 −Y1 ∗ V ′

1

0 0 0 X2 Y2 1 −X2 ∗ V ′
2 −Y2 ∗ V ′

2

0 0 0 X3 Y3 1 −X3 ∗ V ′
3 −Y3 ∗ V ′

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C00

C01

C02

C10

C11

C12

C20

C21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C22 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U′
0

U′
1

U′
2

U′
3

V ′
0

V ′
1

V ′
2

V ′
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

To get the feature point pairs, FLANN-based matcher [22]
was often adopted, which finds an approximate (may be not
the best) nearest neighbor point in image p for the point in
image q, and then pairs the two points. Considering the pos-
sible wrongly selected feature point pair, such as Pi and Pj

in Fig. 6(a), the FLANN-based method often needs to detect
a large number of feature point pairs, and then selects the
top-k (k is usually larger than 4) feature point pairs to calcu-
late the transformation matrix with the least square method.
However, selecting a larger number of feature points will
lead to non-negligible time latency (e.g., 60 ms), which is
larger than interframe duration (i.e., 33 ms) and unaccept-
able in real-time systems, as shown in Fig. 6(b). Therefore,
it is necessary to quickly and the accurately select appropri-
ate number of feature point pairs for transformation matrix
calculation.

Algorithm 1: Keypoint Selection
Input: An image frame.
Using skin segmentation to extract hand regions.
Using Canny edge detector to get the top, leftmost,
rightmost, and bottom lines {Lk}, k ∈ [1, 4].
Corner point set P = ∅.
while k ≤ 4 & P = ∅ do

for P′
l ∈ Lk & P = ∅ do

A square area containing point Pl is
S′

l = {(xi, x′
l) ≤ δx, |yi − y′

l| ≤ δy}.
The ratio of black pixels in S′

l is ρl.
if ρl > �ρc then

Fitting a line ly for black pixels satisfying
|xi − x′

l| ≤ δx.
Fitting a line lx for black pixels satisfying
|yi − y′

l| ≤ δy.
The angle between ly and lx is γ .
if |γ − 90◦| < �ε then

P′
l is the corner point and P = {P′

l}.

Detecting cross points.
Matching common cross point pairs in two frames.
Selecting four noncolinear cross point pairs as keypoint
pairs {(Xi, Yi), (U′

i, V ′
i )|i ∈ [0, 3]}.

Output: The keypoint pairs.

(a) (b) (c)

(f)(e)(d)

Fig. 8. Process of selecting keypoints. (a) Input frame. (b) Hand segmen-
tation. (c) Line detection. (d) Optimized line detection. (e) Corner point.
(f) Keypoint selection.

To achieve the above goal, we introduce keypoint selection
to calculate C with only four keypoint pairs, where keypoints
mean cross points of lines in the keyboard. As shown in Fig. 7,
due to the size differences of the keyboard and hands, whatever
the location of the occlusion is, the cross points in the keyboard
will not be occluded completely at the same time. In addition,
during a typing process, we observe that the hand movements
between two consecutive frames are not violent, i.e., there
often exist several common cross points for the two frames,
as the green points shown in Fig. 7(a) and (b). Therefore, we
can detect the common cross points appearing on both of the
two consecutive frames (i.e., cross point pairs), and select four
noncolinear keypoint pairs for perspective transformation, as
shown in Algorithm 1.

a) Line detection: With an input image as shown in
Fig. 8(a) which equals to Fig. 7(b), we first utilize skin seg-
mentation [29] to segment the hand region from the image,
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shown as the white region in Fig. 8(b). Then, we get the edges
in Fig. 8(b) using the Canny edge detector [10], as shown in
Fig. 8(c). After that, to detect the lines of keyboard and reduce
the interference of other edges, we use the Hough transforma-
tion [15] to detect the long lines in image, shown as the red
lines in Fig. 8(c). However, there are too many lines, which
may confuse the cross point detection. Therefore, we merge
the detected lines. For convenience, we represent each line in
polar coordinates with a vector (ρ, θ). For the lines close to
each other, which satisfy �ρ < 50 pixels and �θ < 5.7◦, we
only select one of them. The optimized line detection result
for Fig. 8(c) is shown in Fig. 8(d).

b) Corner point detection: As shown in Fig. 8(d), not all
lines of the keyboard (i.e., not all cross points) can be detected,
due to the occlusion of hands. Correspondingly, the location of
a detected cross point can not be directly inferred. To solve this
problem, we introduce the corner point of keyboard to infer the
location of a detected cross point, based on the relative position
between corner point and other cross points. Specifically, we
observe that there usually exist one or more corner points in
captured images during typing, as shown in Fig. 7. Particularly,
the top left or the top right corner often exists. Therefore, we
utilize the top, leftmost, rightmost, and bottom detected line
by priority to detect possible corner points, until one corner
point is detected.

Take the top line as an example, we trace the points of the
top line from the leftmost point to right, to detect the top left
corner point. As shown in Fig. 8(e), for a point P′

l(x
′
l, y′

l) in the
top line, we use a square area S′

l = {(xi, yi)||xi −x′
l| ≤ δx, |yi −

y′
l| ≤ δy} to verify whether P′

l is a corner point. When the ratio
of the number of black pixels (i.e., the possible contour of a
corner) to the number of all pixels in S′

l is larger than �ρc, P′
l

can be a candidate corner point. After that, we fit a line for
the black pixels satisfying |xi − x′

l| < δx and the black pixels
satisfying |yi − y′

l| < δy, respectively, as shown in Fig. 8(e). If
the angle γ between the two fitted lines satisfies |γ−90| < �ε,
P′

l will be selected as the top left corner, (i.e., Pl). Based on
extensive experiments, we set �ρc = 0.25, �ε = 6◦, δx =
δy = 5 by default. It is worth noting that if all borders (i.e.,
all corner points) of the keyboard are not detected, we will
skip this frame. This is because there usually have no valid
keystrokes, when all borders are blocked. Otherwise, if any
border of the keyboard is detected, we will then detect the
corner points for key tracking.

c) Common cross point detection: For other detected
lines, we extend the length of each line to detect the cross
points, as the green points shown in Fig. 8(e). To extract the
common cross point set detected in two frames, we first uti-
lize the detected top-left corner point Pl to infer the location
of a cross point. Specifically, we represent the location of a
cross point Pi with a distance di and an angle θi. As shown
in Fig. 8(f), the distance di is measured as the Euclidean dis-
tance between Pi and Pl, and the θi is computed as the angle
between

−−→
PlPi and

−→
PlP. Here, the point P is a randomly selected

point on the right of Pl in top line. By comparing di and θi of
each point in two frames, we pair two keypoints with similar
distance and angle, i.e., the distance difference in two frames
satisfies δd < 20 pixels while the angle difference satisfies

(a)

(b)

Fig. 9. Sharp and micro camera movements versus coordinate changes
of keys. (a) Short-time sharp camera movements versus coordinate
changes of keys. (b) Long-time micro camera movements versus coordinate
changes of keys.

δθ < 4◦. In Fig. 8(f), the yellow and the green keypoints are
selected as common cross points.

d) Keypoint pair determination: Finally, we select
four noncolinear cross point pairs as keypoint pairs,
{(Xi, Yi), (U′

i, V ′
i )|i ∈ [0, 3]}, which will be used for calcu-

lating the transformation matrix. As shown in Fig. 8, by only
detecting several intersection points instead of a large num-
ber of feature points, we can reduce the time of processing
one image for key tracking from 60 to 26 ms, as shown in
Fig. 6(b), which is smaller than the interframe interval and
satisfies the real-time requirement.

C. Adaptive Tracking

Based on Observation 3, head movements occur occasion-
ally, thus it is unnecessary to track keys from each image.
To reduce the unnecessary computation overhead in image
processing, we present an adaptive key tracking scheme by
introducing a gyroscope, and only activate the previous Key
Tracking module when the head movement is detected.

In Fig. 9(a), we show the gyroscope data and coordinate
changes of keys during a typing process. When the head
movement occurs, there is a sharp increase of angular velocity.
Considering that the size of a key in an image is only about
45 × 25 pixels, when the head movement occurs, the coor-
dinate offset can achieve more than half of a key’s height,
which can probably lead to the mismatch between the loca-
tions and keys, thus we need to activate Key Tracking module
(Section IV-B) to get the new coordinates of keys in the current
frame. Specifically, we use ω(t) =

√
ω2

x (t) + ω2
y (t) + ω2

z (t) to
represent the angular velocity at time t, where ωx(t), ωy(t),
and ωz(t) represent the angular velocity in x-axis, y-axis, and
z-axis, respectively. When ω(t) ≥ εg, we activate Key Tracking
module, where we set εg = 2.9◦/s by default.

In fact, in addition to the sharp increase of angular veloc-
ity caused by non-negligible head movements, the long-time
micro camera movements will also lead to the coordinate
changes of keys. As shown in Fig. 9(b), there is no sharp
increase of gyroscope data, while the accumulated rotation
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Process of detecting fingertips. (a) Input frame. (b) Hand segmen-
tation. (c) Hand contour. (d) Possible fingertips. (e) Remove pitfall fingertips.
(f) Final fingertips.

angle from the last time of key tracking can lead to the
non-negligible coordinate changes. In this case, we introduce
�θr = ∫ t=t1

t=t0
ω(t)dt, where t0 means the last time of key track-

ing and t1 means the current time. If �θr ≥ εr, we activate
the Key Tracking module, where we set εr = 3.1◦ by default.
By introducing adaptive tracking, we can remove unnecessary
image processing for key tracking.

D. Fingertip Detection

After we obtain the coordinate of each key, we need to
detect the fingertips for further keystroke detection and local-
ization. Given an input image, as shown in Fig. 10(a), we
first utilize skin segmentation [29] to extract the hand region
from the image, as shown in Fig. 10(b). We then use the
hand contours shown in Fig. 10(c) and the shape feature [29]
of a fingertip to detect the possible fingertips, as shown in
Fig. 10(d). After that, we move along the hand’s contour
in Fig. 10(c) to remove the pitfall points corresponding to
fingerwebs. Specifically, we use Fi to represent the possible
fingertip point, while using Fi−k and Fi+k to represent the
points visited before and after Fi. As shown in Fig. 10(d),
if

−−−→
FiFi−k × −−−→

FiFi+k > 0, Fi can be treated as a fingertip.
Otherwise, it is a pitfall point in the fingerweb and will be
eliminated, as shown in Fig. 10(e). Besides, we introduce the
distance between the possible fingertip and the center of the
hand, to further remove the pitfall points with distances smaller
than �r. Finally, for each cluster of points related to a finger-
tip, we choose the middle point to represent the final detected
fingertip, as shown in Fig. 10(f). Unless otherwise specified,
we set k = 50 and �r = 100 pixels by default.

E. Keystroke Detection and Localization

After obtaining coordinates of keys and detecting finger-
tips, we will detect and locate keystrokes. Specifically, we first
determine whether a typing operation occurs, i.e., keystroke
detection, and then determine which fingertip is pressing the
key, i.e., keystroke localization, as shown in Algorithm 2.

1) Keystroke Detection: According to Observation 4, the
depth information of fingertips is hardly obtained through a
single image , thus we detect a keystroke from multiple con-
secutive frames. Specifically, a keystroke operation involves
several steps, first the fingertip moves toward the key, then
stays on the key for a short duration, and finally moves away

Algorithm 2: Keystroke Detection and Localization
Input: The consecutive frames.
The ith fingertip in the jth frame is (x(j)

i , y(j)
i ), which is

transformed to (x(j)′
i , y(j)′

i ) in the kth frame, k = j + 5.

if
√

(x(j)′
i − x(k)

i )2 + (y(j)′
i − y(k)

i )2 < εd then
if The jth frame has no keystroke then

Detecting a new keystroke.

else if
√

(x(k−1)′
i − x(k)

i )2 + (y(k−1)′
i − y(k)

i )2 < εd then
Detecting a new keystroke.

if A new stroke is detected then
Selecting fingertip with largest coordinate variation.
Matching fingertip with key by coordinates.

Output: The located keystroke.

from it. An example is shown in Fig. 11 (i.e., the seventh
fingertip). Therefore, the coordinate changes of fingertips can
be used to detect possible keystrokes. Additionally, to reduce
the processing cost, we introduce a frame-skipping scheme
for keystroke detection, instead of detecting the coordinates
of fingertips from each image frame.

To capture enough information for keystroke detection and
localization, we first set the frame rate of camera to 30 fps,
which is the maximum/default frame rate of off-the-shelf
mobile devices. According to [9], the duration of a keystroke
usually lasts 185 ms, which is about the duration of cap-
turing five or six frames. Therefore, we first process every
five image frames and compare each fingertip’s coordinate.
For convenience, we use T(j)

i (x(j)
i , y(j)

i ) and T(k)
i (x(k)

i , y(k)
i ) to

represent the ith fingertip’s coordinate in the jth and the kth
frames, where k = j + 5. Considering that camera movement
may happen between the jth frame and the kth frame, T(j)

i
is transformed to the coordinate system of the kth frame as
T(j)′

i (x(j)′
i , y(j)′

i ), based on perspective transformation. If the

coordinate change δd =
√

(x(j)′
i − x(k)

i )2 + (y(j)′
i − y(k)

i )2 is less
than εd, the fingertip is considered unchanged, otherwise it is
moving. We set εd = 15 pixels by default.

After obtaining the coordinate changes of a fingertip from
every five frames, we further need to determine whether a fin-
gertip is pressing a key. As mentioned before, the duration of a
keystroke usually lasts for 185 ms. If the coordinates of a fin-
gertip T(j)′

i and T(k)
i from the jth to the kth (k = j + 5) frames

keep unchanged, it implies that the fingertip keeps staying on
the pressed key during the last five frames because the dura-
tion for pressing a key in the jth frame, then moving out and
coming back to the same key is usually larger than 185 ms
(i.e., more than the duration of five frames). At this time, if we
have processed a keystroke in the jth frame, we will not pro-
cess the keystroke in the kth frame repeatedly. Otherwise, we
detect a new possible keystroke in the kth frame. Differently,
if the coordinates of fingertip T(j)′

i and T(k)
i from the jth to the

kth frames change, we need to further determine whether there
is a keystroke in the kth frame. At this time, we introduce the
(k−1)th frame, detect the coordinate of the fingertip as T(k−1)

i ,
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(a) (b) (c) (d) (e) (f)

Fig. 11. Sampled frames in the process of pressing “U” with fingertip 7. The yellow and red points are the locations of the fingertip 7 in previous and current
sampled frame, respectively. The green arrow indicates the trend of the fingertip’s movement. The blue circles and points are the locations of other fingertips
in previous and current sampled frame, respectively. (“Fm” is short for frame.) (a) Fm 1: moving to “U.” (b) Fm 4:moving to “U.” (c) Fm 7: pressing “U.”
(d) Fm 10: pressing “U.” (e) Fm 13: leaving “U.” (f) Fm 16: leaving “U.”

Fig. 12. Coordinate changes in y-axis of ten fingertips.

and transform T(k−1)
i to the coordinate system of the kth frame

as T(k−1)′
i . Then, we calculate the coordinate changes of fin-

gertip δd′ =
√

(x(k−1)′
i − x(k)

i )2 + (y(k−1)′
i − y(k)

i )2 between the
(k − 1)th and the kth frames. If δd′ > εr, the fingertip keeps
moving, there is no keystroke. Otherwise, we detect a possible
keystroke in the kth frame, and keystroke localization will be
described in the following section.

2) Keystroke Localization: Keystroke localization is to
detect which finger is typing. As shown in Fig. 11, although all
fingertips move together during a keystroke, the fingertip Tk

pressing a key often has the largest coordinate changes, espe-
cially in y-axis. This is because Tk needs to move toward the
target key, stay on the key, and then move away, while other
fingertips often keep hovering or staying on the keyboard with-
out a large variation of coordinates. As shown in Fig. 12, the
“fingertip 7” pressing a key has the largest variation of coor-
dinates in y-axis. For the detected fingertip pressing a key, we
further match the coordinate of the fingertip and the location
of a key to locate the keystroke.

3) Adaptive Calibration: However, considering the possi-
ble errors in keystroke detection and localization, we introduce
the adaptive calibration scheme for a better typing experi-
ence. First, in the user interface, we keep the “ADD” and
“DELETE” operations. If the typing operation is not detected,
the user can use “ADD” button in the top right corner of
user interface to input the character by screen. If the typing
operation is wrongly detected/located, the “DELETE” but-
ton in the top-right corner of user interface can be used to
remove the character. Second, considering the language rules
in regular text, we introduce the Bayesian method [33] to
correct the wrong keystroke sequence. That is to say, given
the keystroke sequence, we calculate the likelihood of each
possible word and finally select the word with largest likeli-
hood. In this way, we can tolerate the errors like false-negative

keystrokes, false-positive keystrokes, and wrongly detected
keystrokes.

V. PERFORMANCE EVALUATION

We deploy DynaKey on a Samsung Galaxy S9 smartphone
which is used as a head-mounted camera device, as shown
in Fig. 2(a). The smartphone runs Android OS 9.0. We use
a Microsoft Hololens [13] keyboard layout and print it on a
piece of A4-sized paper. Unless otherwise specified, the frame
rate of camera is set to 30 fps, the sampling rate of gyroscope
is set to 200 Hz, the image size is set to 800×480 pixels. We
conduct our experiments in an office environment. We recruit
twelve volunteers to participate in the experiments and each
subject types a set of predefined 1600 characters. Data sani-
tized is done to ensure no private and identity information. We
first evaluate the performance of key tracking and keystroke
localization. Then we evaluate how camera jitters, frame sizes,
and frame rates affect the performance of key tracking and
keystroke localization. We also evaluate the performance of
DynaKey in complex scenarios to explore its usage modes.
After that, we evaluate the latency and energy consumption
of DynaKey. Finally, we evaluate DynaKey on text input, and
compare DynaKey with the state-of-the-art text input methods.

A. Performance Metrics

To measure the accuracy of key tracking, we use Er =
(1/z)

∑z
i=1

√
(xmi − xgi)

2 + (ymi − ygi)
2 to represent the aver-

age pixel deviation between the calculated cross points’
coordinates forming the keyboard layout and the ground truth,
and IoU = (1/n)

∑n
i=1 IoUi to represent the average IoU [25]

between the calculated keys’ areas and the ground truth. The
smaller Er the better, and the larger IoU the better. Here,
(xmi , ymi) and (xgi , ygi) represent the calculated coordinate and
the ground truth of the ith cross point, respectively, and IoUi

represents the IoU between the calculated ith key’s area and
the ground truth. z = 55 represents the number of cross points,
while n = 40 represents the number of keys, as shown in
Fig. 4(a). We obtain the ground truth by manually detect-
ing the premarked coordinates of cross points and keys from
each image frame. To measure the performance of keystroke
localization, we use several metrics–localization accuracy,
localization error, false-positive rate (FPR) and false-negative
rate (FNR). The localization accuracy is the ratio of correctly
located keystrokes to the number of keystrokes performed by
subject. The localization error is the ratio of falsely located
keystrokes to the number of keystrokes performed by subject.
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(a) (b)

Fig. 13. Performance of key tracking and keystroke localization. (a) Key
tracking accuracy in 100 frames. (b) Keystroke localization performance with
and without key tracking.

FPR and FNR are defined as the ratio of falsely detected
keystrokes and missed keystrokes to the number of keystrokes
performed by subject, respectively.

B. Accuracy of Key Tracking and Keystroke Localization

In the experiment, a subject is instructed to type on the
keyboard in her/his own way. She/he may move her/his head
naturally during the typing process. We evaluate the accuracy
of key tracking by the aforementioned pixel deviation Er and
the average intersection over union IoU in 100 frames. As
shown in Fig. 13(a), the pixel deviation Er in an image ranges
from 0 to 5 pixels, and the average pixel deviation Er among
the frames is less than 3 pixels. When comparing with the key
size, i.e., 45×25 pixels, the deviation less than 3 pixels can be
neglected. Meanwhile, the average IoU achieves above 93%,
indicating that the area of the calculated key coincides with
the ground truth in a high degree. To conclude, DynaKey accu-
rately tracks the coordinate changes of keys in different frames
while tolerating head movements during the typing process.

To evaluate the performance of keystroke localization and
tracking in dynamic scenes, we instruct a subject to press all
the keys on the keyboard without and with the key tracking
module. Fig. 13(b) shows that the keystroke localization accu-
racy without key tracking module is only about 66.9%, while
the localization error and false-negative rate are also high.
This may be mainly due to the mismatch between the key’s
location and its coordinates in dynamic camera views. With
the key tracking module, the keystroke localization accuracy
increases significantly, i.e., from 66.9% to 95.5%, and local-
ization error, false-positive rate, and false-negative rate are
1.9%, 2.1%, and 2.6%, respectively. The results demonstrate
that DynaKey accurately locates the keystrokes, and the key
tracking module plays a critical role in keystroke localization
in dynamic scenes.

C. Effect of Camera Jitters

In this experiment, we evaluate the performance of key
tracking and keystroke localization under different camera jit-
ters. First, we change the range of camera jitters, i.e., from
stationary, slight (1.28◦ ± 0.26◦), obvious (6.8◦ ± 4.4◦) to
large (18.4◦ ± 3.7◦). Here, stationary means the device keeps
unchanged during typing, while other jitters mean different
ranges of camera movements, which are controlled by attach-
ing the device to a motor. The performance of key tracking and
keystroke localization are shown in Figs. 14(a) and Fig.15(a),

respectively. The results show good performances of key
tracking and keystroke localization under slight and obvious
range of jitters. When the camera jitter is obvious, the aver-
age pixel deviation is less than 3 pixels while the average IoU
achieves 92.3%, and the localization accuracy reaches 93.7%.
When the camera suffers from large jitters, the performance of
key tracking reduces clearly, the localization accuracy drops
to 89.1%. This may be caused by the mismatch between the
detected fingertip and the key’s coordinate during large jitters.

In addition, we evaluate the performance of DynaKey by
changing the frequency of jitters, i.e., keeping stationary and
moving in low (0.04◦ ± 0.03◦/s), medium (0.09◦ ± 0.06◦/s),
and high (0.2 ± 0.15◦/s) speed, respectively. The subject
types the same text as the above experiment. As shown in
Figs. 14(b) and Fig. 15(b), DynaKey can tolerate low and
medium camera jitters well. When camera moves in medium
speed, the average pixel deviation is 3.2 pixels and the IoU
is 92.2%, and the keystroke localization accuracy reaches
93.3%, respectively. In the case of high-frequency jitters, it
is hard to guarantee that the updated coordinates of keys per-
fectly match with the fingertip pressing the key, the tracking
and localization performance decreases. The pixel deviation
increases to 4.5 pixels while the IoU decreases to 88.9%,
and the false-negative rate for keystroke localization increases
to 7.5%. However, considering the normal or unconscious
head/camera movements during a typing process, the large or
high-frequency jitters are rare, thus DynaKey performs well
in typical cases. Besides, when using the camera with higher
frame rates to capture fine-grained camera movements, it is
possible to mitigate the effect from large or high-frequency
jitters.

D. Effect of Frame Sizes and Frame Rates

In this experiment, we evaluate how image sizes affect the
performance of DynaKey. When the frame size is small, e.g.,
480 × 320 pixels, the keyboard in the captured frame involves
too few pixels to be extracted accurately, leading to poor
performance. When the frame size increases to 800 × 480 pix-
els, the performance shows good results. When the frame
size keeps increasing to 1280 × 720 pixels, the performance
has a little decrease. This may be because the higher image
resolution leads to the keyboard containing more pixels, result-
ing in a larger pixel deviation for key tracking. Besides, the
higher image resolution also causes higher image process-
ing cost, which may be too slow to process each keystroke
and leads to higher false-negative rate. In practice, to mini-
mize latency and power consumption while guaranteeing the
keystroke localization performance, the frame size is set to
800 × 480 pixels.

In addition, to show the efficiency of our frame-skipping
scheme in Section IV-E1, we evaluate how the frame rates
affect the system performance. Specifically, the default frame
rate of the camera is 30 fps, which is usually the maxi-
mal/default frame rate of off-the-shelf Android smartphones.
Then, we change the interval of processing an image, i.e., we
process every Nd images and Nd ∈ [1, 10]. Fig. 14(d) shows
that the change of Nd has little effect on the performance
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(a) (b) (c) (d)

Fig. 14. Performance of key tracking under different ranges and speeds of jitters, frame sizes, and rates. (a) Key tracking versus range of jitters. (b) Key
tracking versus speed of jitters. (c) Key tracking versus frame sizes. (d) Key tracking versus sampling interval.

(a) (b)

(c) (d)

Fig. 15. Performance of keystroke localization under different ranges and speeds of jitters, frame sizes and rates. (a) Keystroke localization versus range
of jitters. (b) Keystroke localization versus speed of jitters. (c) Keystroke localization versus different frame sizes. (d) Keystroke localization versus different
sample intervals.

(a) (b) (c) (d)

Fig. 16. Keystroke localization performance under different complex scenarios. (a) Keystroke localization versus different light sources. (b) Keystroke
localization versus different surfaces. (c) Keystroke localization versus different devices. (d) Keystroke localization versus different keyboard layouts.

of key tracking. However, Nd affects the frequency of key
tracking and keystroke localization performance. Fig. 15(d)
shows that when the interval Nd <= 5, DynaKey performs
well in keystroke localization. When the interval is 5, the local-
ization accuracy reaches 95.5%. However, when the interval
keeps increasing, it may miss some keystrokes, leading to a
lower localization accuracy and a higher false-negative rate. To
achieve a better tradeoff between the keystroke localization
performance and computation overhead, we set the interval
Nd = 5, i.e., DynaKey processes every five frames.

E. Effect of Complex Scenarios

1) Different Light Sources: In this experiment, we eval-
uate whether DynaKey can locate the keystrokes efficiently

in the environments with different light conditions. We con-
duct the experiments in three typical scenarios: 1) an office
environment (light color is close to white); 2) outdoors (basic
light); and 3) a restaurant (light is a bit warm). A sub-
ject is instructed to type the same set of characters in these
three scenarios. As show in Fig. 16(a), DynaKey achieves
good performance in all the three scenarios, i.e., the local-
ization accuracy is 94.4% on average, while the average
localization error, false-positive rate, and false-negative rate
are 2.1%, 2.3%, and 3.4%, respectively. In the office scenario,
DynaKey achieves the best keystroke localization accuracy,
i.e., 95.5%.

2) Different Surfaces: In real-world applications, repeat-
edly handling a printed paper keyboard may easily cause
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Fig. 17. Keystroke localization versus backgrounds with different stripes.

warping. In this experiment, we use a flat paper keyboard and
a wrinkled one to evaluate the effect of wrinkled paper on
keystroke localization. Fig. 16(b) shows that when typing on
the flat keyboard layout, the accuracy of keystroke localization
achieves 95.5% on average. When typing on the wrinkled one,
the localization accuracy is 93.6% on average. Wrinkled paper
may affect the detection of long lines and corner points of the
keyboard layout, thus the keystroke localization performance
for a wrinkled paper keyboard is slightly worse than that of
the flat one.

3) Different Backgrounds: When placing the keyboard on
object surface, the texture of surface (i.e., background) may
affect the detection of keyboard, especially for surfaces with
stripes which are similar to lines in keyboard. Therefore, we
use four kinds of backgrounds with stripes (i.e., grid, pinstripe,
wood with light color, and wood with deep color) to evalu-
ate DynaKey. As shown in Fig. 17, the stripes in backgrounds
only have a little effect on keystroke detection and localization.
In fact, the lines in keyboard have fixed rules (e.g., distance
and length), while the rules in stripes of backgrounds are usu-
ally different from that in keyboard. Thus DynaKey can work
well for keyboard/key tracking. In regard to the performance
decrease in the fourth bar, it is mainly caused by the color
of background, which is closer to skin color and can affect
hand/finger extraction.

4) Different Devices: In addition to the Samsung Galaxy S9
smartphone, we also evaluate the performance of keystroke
localization in DynaKey using two other smartphones—
XiaoMi Note 3 (Android OS 8.1) and Huawei Honor 7i
(Android OS 6.0). As shown in Fig. 16(c), the average
localization accuracy is 95.5% for Samsung phone, 94.7%
for XiaoMi phone, and 92.9% for Huawei phone. The
performance difference may come from the aspects like the
location of camera, viewing angle of camera, the size of
device, etc. Nevertheless, DynaKey can work well in different
devices.

5) Different Keyboard Layouts: In this experiment, we
use two common keyboard layouts—Hololens [13] and U.S.
ANSI [17], to evaluate the performance of keystroke localiza-
tion. Each layout is printed on a piece of A4-sized paper.
Fig. 16(d) shows that whatever the keyboard layout is,
DynaKey has good performance in keystroke localization, i.e.,
the accuracy achieves above 94.3%. Besides, to further explore
the scalability of DynaKey, we draw a A4-sized Hololens key-
board layout on the surface of a table, and the subject is
instructed to type a set of characters as in previous experi-
ments. As shown in Fig. 16(d), even if we replace the article
keyboard with a drawn keyboard layout, the accuracy of

(a) (b)

Fig. 18. Latency of key tracking and keystroke localization. (a) Latency of
key tracking. (b) Latency of keystroke localization.

TABLE I
POWER CONSUMPTION

keystroke localization still reaches above 93%, indicating that
DynaKey can work with a simple keyboard layout.

F. Latency and Power Consumption

We first evaluate the time delay of key tracking for a frame.
Specifically, we compute the time duration from getting an
input image to obtaining the updated coordinates of keys in
100 images. Fig. 18(a) shows a large variation in the distribu-
tion of latency. This may be due to the difference in the number
of pixels involved in keypoint selection. However, the average
time cost for tracking keys for one frame is 26 ms, which is
smaller than the interframe duration, i.e., 33 ms. It indicates
that our key tracking scheme satisfies the real-time require-
ment for real-world applications. To evaluate the latency of
processing a keystroke, we conduct the experiment by ran-
domly pressing 100 keystrokes, and calculate the time duration
from detecting a possible keystroke to locating the pressed
key. Fig. 18(b) shows that the mean latency is 63 ms, which
is below human response time [23]. Overall, with low latency
for key tracking and keystroke localization, DynaKey provides
a real-time text input method for head-mounted devices.

To measure the power consumption of DynaKey on the
Samsung Galaxy S9 smartphone, we use Battery Historian [12]
by Google. For comparison, we measure the average power
consumption in four different states: 1) idle, with the screen
off; 2) idle, with the screen on; 3) keeping the camera
on the preview mode; and 4) running our system for text
input. As shown in Table I, by comparing the case of
“Backlight,” “Camera-on,” and “DynaKey,” more than 64% of
power consumption comes from camera, which is essential for
camera-based applications. The additional power consumption
by DynaKey is 1092 mW, i.e., DynaKey consumes about 25%
additional power. In the future, we will optimize the approach
to further reduce the power consumption.

G. Evaluation on Text Input

To further evaluate the performance of DynaKey on text
input, we invite twelve volunteers and instruct them to type
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(a)

(b)

(c)

Fig. 19. Performance of different subjects. (a) Localization performance ver-
sus provided text input for different subjects. (b) Localization performance
versus self-determined input for different subjects. (c) Input speed versus
keyboard for different subjects.

on the virtual keyboard. The typed word sequences are picked
from the top-5000 words of the word frequency corpus [32],
which well represents the usage frequency of English words.
Before evaluation, all subjects have 30-min trial runs. In an
experiment, a subject types a set of predefined text and the
self-determined text naturally. Each experiment lasts for 2 h
with three breaks in due course.

1) Text Input: Each subject is first instructed to type a
predefined words (1600 characters). Fig. 19(a) shows that
DynaKey performs well, i.e., achieving 95.0% localization
accuracy on average, while the localization accuracy of “sub-
ject 7” achieves 96%. The average localization error, false-
positive rate, and false-negative rate are 2.3%, 2.9%, and 2.7%,
respectively. They are then allowed to type a self-determined
words (2000 characters). Fig. 19(b) shows that the average
localization accuracy is 94.7%, and the average localization
error, false-positive rate, and false-negative rate are 2.4%,
3.3%, and 2.9%, respectively. The performance is comparable
to that of typing predefined text.

2) Input Speed: We also evaluate the input speeds of differ-
ent subjects in terms of WPM (words per minute). Subjects are
instructed to type the predefined characters with the proposed
DynaKey system and Microsoft Hololens 1 [13], respectively.
Fig. 19(c) shows that the average text input speed of DynaKey
is 13.8 WPM while that of Hololens 1 is 6.4 WPM. Although
the result of DynaKey is slower than that of typing on a
physical keyboard [9], it still achieves 2X typing speedup com-
pared to Hololens 1. In addition, typing with Hololens usually

TABLE II
USER EXPERIENCE

requires head movements for key selection, which may lead
to the fatigue of head.

3) Difference With the State-of-the-Art Text Input Methods:
In stationary scenarios, UbiK [28] and Camk [29] are typi-
cal state-of-the-art text input methods for mobile devices. In
terms of text input performance, these two approaches and
our DynaKey have comparable keystroke localization accuracy
and time latency. However, in regard to working scenarios,
UbiK fixes the device and utilizes the microphone to locate
keystrokes. CamK fixes the embedded camera to capture the
typing process. Both of the two methods are not suitable for text
input in dynamic scenarios. Differently, our proposed DynaKey
aims to move a step toward dynamic scenarios, where the
camera/device can move naturally. The dynamic movement of
device is natural and realistic for wearable devices, especially
for head-mounted devices (e.g., smart glasses).

4) User Experience: Finally, we evaluate the user experience
among 12 participants via questionnaire, including 1) technical
complexity; 2) accuracy; 3) latency; and 4) user friendliness
(1 = strong negative and 5 = strong positive). Table II shows
the results. For the technical complexity and latency, most of
the participants hold positive attitudes, because identifying the
fingertip and small-size key are challenging. For the accuracy,
some participants have a little negative evaluation, we will
try our best to improve it in future. For the user friendliness,
some participants have a negative evaluation for the adopted
head-mounted equipment. Overall, as a new technology for
text-input in dynamic scenes, our DynaKey can benefit a lot of
head-mounted devices (e.g., smart glasses) and even work in
many other human–computer interaction scenarios.

VI. DISCUSSION

This section discusses the limitations of the work and points
out our future direction.

Multiple Cameras: DynaKey uses one camera of a head-
mounted device. Many off-the-shelf mobile devices have been
equipped with more than one camera. With multiple cameras,
we may obtain the depth information of a target, thus will
significantly improve the keystroke localization performance.
We will extend DynaKey with multiple cameras.

Virtual Keyboard: In DynaKey, we print the keyboard lay-
out on a piece of paper to represent the virtual keyboard by
default. In fact, DynaKey can also work with other virtual key-
boards, e.g., keyboard drawn on the desk, as demonstrated in
Section V-E5. The virtual keyboard allows the user to type on
the common keyboard layout with two hands, even the mobile
or wearable device has tiny or no screen. Besides, as a tech-
nique working with off-the-shelf devices in dynamic moving
scene, DynaKey can complement to existing text input meth-
ods using dedicated equipments [11], [13], working in fixed
scenarios [26], [29], etc. In our future work, we will investi-
gate the use of a head-mounted virtual reality (VR) device to
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generate a true virtual keyboard layout, and further improve
the design of DynaKey.

Keyboard Tracking: We have also considered placing four
noncollinear markers outside the keyboard to track keys’
coordinates, which may prevent the hand occlusion cases.
However, we observe that small markers (e.g., diameter is
close to the keyboard’s line thickness) are difficult to be
detected and are vulnerable to light conditions, while big mak-
ers (e.g., with a larger diameter) may confuse the selection
of feature point (i.e., determine the position of feature point
in a large area) and affect the calculation of transformation
matrix. Therefore, we select cross points of lines in the key-
board to calculate the transformation matrix and track the
keys’ coordinates.

Keyboard Movement: DynaKey focuses on the scene where
camera moves dynamically. In fact, when the keyboard moves,
DynaKey can also work by relocating the keyboard with the
detected cross points in Section IV-B2. Besides, when the user
looks back or too close to the keyboard, DynaKey keeps sleep-
ing because of no entire keyboard or fingers in the camera
view, and restarts working once detecting the keyboard.

Possibility of Using Deep Learning-Based Methods:
Recently, a lot of object tracking and semantic segmentation
methods were proposed. Intuitively, these methods can be used
to track keyboard and extract fingertips for keystroke detec-
tion and localization. However, due to the lack of large-scale
training samples, the methods can not achieve pixel-level accu-
racy in keyboard tracking or fingertip extraction. Besides, these
methods can hardly achieve real-time tracking or segmentation
on resource-limited smartphone. More exploration about deep
learning-based methods are expected.

VII. CONCLUSION

In this article, we propose DynaKey that deploys a head-
mounted camera device to enable users type on a paper-
based virtual keyboard in realistic and dynamic scenarios.
DynaKey dynamically tracks keys, detects fingertips, and
locates keystrokes. We implement DynaKey on Android
devices and our experiment results show that DynaKey per-
forms well in key tracking and keystroke localization and
achieves low latency for text input.
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