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Abstract—Due to the ever-growing powers in sensing, com-
puting, communicating and storing, mobile devices (e.g., smart-
phone, smartwatch, smart glasses) become ubiquitous and an
indispensable part of people’s daily life. Until now, mobile
devices have been adopted in many applications, e.g., exercise
assessment, daily life monitoring, human-computer interactions,
user authentication, etc. Among the various applications, Human
Activity Recognition (HAR) is the core technology behind them.
Specifically, HAR gets the sensor data corresponding to human
activities based on the built-in sensors of mobile devices, and then
adopts suitable recognition approaches to infer the type of activity
based on sensor data. The last two decades have witnessed the
ever-increasing research in HAR. However, new challenges and
opportunities are emerging, especially for HAR based on mobile
devices. Therefore, in this paper, we review the research of HAR
based on mobile devices, aiming to advance the following research
in this area. Firstly, we give an overview of HAR based on mobile
devices, including the general rationales, main components and
challenges. Secondly, we review and analyze the research progress
of HAR based on mobile devices from each main aspect, including
human activities, sensor data, data preprocessing, recognition
approaches, evaluation standards and application cases. Finally,
we present some promising trends in HAR based on mobile
devices for future research.

Index Terms—Human activity recognition, mobile devices,
human activities, sensor data, data preprocessing, recognition
approaches, evaluation standards, application cases.

I. INTRODUCTION

As a ubiquitous and smart device, the mobile device (e.g.,
smartphone, smartwatch, smart glasses) is small size, low
cost and integrated with a variety of modules for sensing,
computing, communicating, etc. Until now, mobile devices
have brought a new way of life and have become an indispens-
able part of people’s daily life. People have applied mobile
devices in a rich set of applications, especially for human-
centered applications, e.g., exercise assessment, daily life
monitoring, motion sensing games, etc. Usually, these human-
centered applications are based on a core technology, i.e.,
Human Activity Recognition (HAR), which gets the sensor
data from the device’s embedded sensors (e.g., accelerometer,
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microphone) and then infers the corresponding human activity.
Take daily activity monitoring (e.g., walking) as a typical
example, when the user is walking, we can get the sensor data
like acceleration and angular velocity from mobile device, then
we need to process the data and recognize the human activity
corresponding to the data as walking.

The research work on human activity recognition can date
back to the late 90s [1][2], and the early work mainly consisted
of vision-based HAR [3][4] and sensor-based HAR [5][2][6].
The former one mainly relies on the fixed cameras to capture
human activities, and then recognizes the activities from
images or videos. The latter one utilizes the sensor nodes
(e.g., accelerometer) deployed in environments, attached to
objects or worn by users to capture human activities, and
then processes the sensor data for activity recognition. In
later studies, the radio signals generated from the devices like
RFID systems [7][8] and WiFi devices [9][10] were adopted
to sense and recognize human activities. In recent years, due
to the enrichment of embedded sensors like accelerometers,
microphones and cameras of mobile deices, more and more
research work turn to mobile device-based HAR. In regard to
this kind of research work, it utilizes the built-in sensors of
mobile devices to sense human activities, and then recognizes
activities in the device or transmits the sensor data to a server
for activity recognition. In this paper, we focus on the HAR
research work based on mobile devices.

Different from fixed devices like cameras, RFID systems
or WiFi devices mounted/placed in fixed positions, mobile
devices can be carried everywhere, thus the sensor data is
easily affected by unexpected activities and environmental
noises. In addition, mobile devices are also different from
sensor nodes which are mainly used for data collection, e.g.,
accelerometers attached on a glove. Mobile devices have a
higher computational power than sensor nodes, thus have a
chance to locally process data and recognize activities on
the device. Specifically, a mobile device is a pocket-sized
computing device [11], which can be hold and operated in the
hand. It usually has a displayer and provides a touchscreen
interface with buttons or keyboards for input [11]. Usually,
mobile devices have the following characteristics: (1) Inte-
grated with sensing modules: a mobile device is often inte-
grated with many sensors, such as accelerometer, gyroscope,
microphone, camera, GPS module, light sensor, and so on. (2)
Accessible to network: mobiles devices can communicate with
other devices/servers with Bluetooth, WiFi, or mobile data
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Fig. 1. The workflow and main components of human activity recognition.

network, thus can transmit or receive data through network.
(3) Limited computational resources: due to the limitation
of size, the performance of processor, memory, storage in
a mobile device is inferior to that in a desktop computer.
(4) Limited battery life: mobile devices are battery powered,
thus difficult to work for a long time without recharging.
(5) Running on an operating system: mobile devices often
run on a separate system, e.g., Android or iOS, and the
user can install or uninstall the third-party application on
the device. (6) Lightweight and portable: the small-size and
lightweight mobile devices are easy to carry everywhere and
work at different time and places. For mobile devices, the rich
embedded sensing modules bring new opportunities for HAR.
However, the limited resources and the interferences caused by
movements of devices bring new challenges for HAR at the
same time. The opportunities and challenges motivate the ever-
increasing research work on HAR based on mobile devices.
Unless otherwise specified, the mobile devices in this paper
refer to smartphones, smartwatches and smart glasses.

In regard to human activity recognition based on mobile
devices, it consists of five main components, as shown in Fig.
1. When the user performs an activity, the mobile device worn,
carried, or close to her/him will record the human activity
with the embedded sensors (e.g., accelerometer, microphone,
camera). Then, we can get the corresponding sensor data
like acceleration, acoustic signals, images, etc. After that,
we preprocess the sensor data to obtain the suitable data
corresponding to human activities. Finally, we use appropriate
recognition approaches to recognize the preprocessed sensor
data as a type of activity, e.g., walking, typing or tapping. It is
worth noting that all of five components have a chance to be
performed on mobile devices. However, when considering the
limited resources of mobile devices, by transmitting the sensor
data to a server through network (e.g., Bluetooth, WiFi, mobile
data network), data preprocessing, recognition approaches, and
recognized results can also be performed and obtained in a
server. When referring to the five main components, they have
the following characteristics: (1) Human activities: they in-
clude many kinds of activities like daily activities and exercise
activities, involving activities with different granularities, e.g.,
body movements, arm movements, hand movements, finger

gestures, vital sign changes, etc. (2) Sensor data: the data
generated by sensors includes inertial sensor data, acoustic
signals, images, touch sensor data, and so on. The sensor data
used for HAR can be unimodal data generated from the same
sensor or multimodal data generated from different sensors.
(3) Data preprocessing: it usually includes denoising, data
segmentation and data transformation (e.g., coordinate system
transformation, Fourier transform, color space conversion), to
provide suitable data for activity recognition. (4) Recognition
approaches: they process the sensor data and infer the type of
human activity from sensor data, while using data-driven ap-
proaches, knowledge-driven approaches or hybrid approaches.
(5) Recognized results: it is a type of activity, e.g., walking,
typing, tapping. Usually, there is a set of candidate activities
and we need to determine the recognized result as one type
of activity from the set. Considering the main components in
HAR, in this paper, we will review the existing HAR research
work from the aspects of human activities, sensor data, data
preprocessing, and recognition approaches. Besides, we will
also present the evaluation standards as well as the typical
HAR application cases based on mobile devices.

A. Comparisons with previous reviews

There have been some related reviews on human activity
recognition, mainly including vision-based, radio-based and
sensor-based HAR reviews. The similarity and difference
between the existing reviews and this review will be described.

Vision-based reviews: They mainly focus on the image
(or video) based recognition approaches for human activities
[19][20][21], while paying little attention to the sources of
sensor data, the computation overhead, etc. Aggarwal et al. [4]
reviewed the single-layered recognition approaches for simple
human actions and hierarchical recognition approaches for
high-level activities. Bux et al. [20] surveyed the research work
in different phases of HAR, including image segmentation,
feature extraction and activity classification. While in our
review, the sensor data may come from different sensors,
not just that from camera. Thus data processing methods
for different types of sensor data will be provided. Besides,
considering the unexpected movements of devices, the limited
resources of mobile devices, and the differences of application
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TABLE I
COMPARISON OF HAR REVIEWS USING SMARTPHONES

Review Year Device

Main component

Focus RW
Activity Sensor Preproc

Approach

Evaluation ApplicationKnowledge
-driven

Data-driven

ML DL

[12] 2012 SP # G# # #  # # G# Classification algorithms 22

[13] 2014 SP G# G# G# #  # # G# Data mining techniques < 78

[14] 2015 SP G# G# # #  # G# # Online activity recognition 30

[15] 2015 SP # G# # # # # # G# Applications and challenges < 18

[16] 2021 SP # G# G# #  G# G# # Health research 108

[17] 2021 SP # G# G# #  G# G# # Inertial sensor based HAR < 137

[18] 2021 SP G# G# # # G# G# # # Comparison of research work 20

Our 2023 SP, SW,
SG         A systematic review on each component,

challenges, and trends 161

SP: Smartphone, SW: Smartwatch, SG: Smart glasses, Preproc: Preprocessing, ML: Traditional machine learning, DL: Deep learning, RW: Reviewed works
#: Not researched, G#: Partially researched,  : Researched

TABLE II
COMPARISON WITH COMMON HAR REVIEWS

Review Sensors Data Computation

Vision-based Camera Images/videos Server
Radio-based RFID, WiFi, Zig-

Bee devices, etc
Radio signals Server

Sensor-based External sensors,
wearable sensors

Varied Server

Our On-board sensors
of mobile devices

Varied Local or server

scenarios, the recognition approaches in this review can be
different from those in vision-based reviews.

Radio-based reviews: They mainly focus on the HAR work
based on radio signals, e.g., RFID signals, WiFi signals, etc.
Want et al. [22] investigated the HAR work based on ZigBee
signals, WiFi signals, RFID signals and other signals. Liu
et al. [9] surveyed the existing work using wireless signals
(e.g., WiFi) for human activity sensing. The radio signals
from mobile devices are rarely used for HAR, thus these
reviews are different from our review in almost every aspect,
including sensor data, data preprocessing methods, recognition
approaches, and so on.

Sensor-based reviews: They reviewed the HAR research
work using sensors deployed in environments, attached to
objects, worn by users, integrated in smartphones [16], and
so on [23][24][25]. Chen et al. [5] investigated the major
approaches in HAR based on the sensors within environments,
sensors attached to objects and wearable sensors. Lara et al.
[2], Bulling et al. [6], Attal et al. [26] and Wang et al. [27]
reviewed the HAR research work based on wearable sensors.
Nweke et al. [28], Wang et al. [29] and Chen et al. [30]
focused on the deep learning approaches for sensor-based
HAR. When using the embedded sensors in smartphones,
Su et al. [13], Abdullah et al. [12], Shoaib et al. [14] and
Sunny et al. [15] reviewed the core data mining techniques,
classification algorithms, online research work or applications

in HAR, respectively. The sensor-based reviews are close to
but different from our review. Firstly, different from a sensor
node, the mobile device concerned in this review is often
integrated with multiple types of sensors and can provide
multimodal sensor data for HAR. Secondly, a sensor node
is often used for sensing and data processing is usually
performed in a server. While a mobile device can not only
provide sensor data, but also have a chance to process the
data locally for activity recognition. Thirdly, mobile devices
not only include smartphones, but also include the newly-
emerging smartwatches and smart glasses. In addition, the
existing reviews mainly focused on recognition approaches
[31][24][32], while paying little attention to computation and
resource overhead, which can be an important consideration in
designing HAR approaches for mobile devices. Therefore, the
HAR research work based on mobile devices can be different
from that based on sensors, especially when considering the
data fusion, computation overhead, implementation ways, etc.

In Table II, we summarize the main differences between
these kinds of reviews. Due to the difference between mobile
device and camera, wireless device, sensor node, the mobile
device based HAR work is different from vision-based, radio-
based, sensor-based HAR work, including collected sensor
data, data preprocessing methods, recognition approaches,
application scenarios, and so on. Therefore, it is necessary
to provide a mobile device based HAR review in particular,
especially nowadays when lots of mobile devices emerge and
mobile device based HAR work becomes popular.

B. Article scope and contributions

Until now, there still lacks of a systematic review summa-
rizing the HAR research work based on mobile devices, which
refer to smartphones, smartwatches and smart glasses. From
the perspective of sensor data’s sources, the closest reviews are
smartphone-based reviews, which surveyed the HAR research
work based on smartphones. However, among the smartphone-
based reviews, the early ones [12][13][14][15] focused on
the research work published before (or in) 2015. The latest
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ones [16][17][18] tended to review the HAR work from a
certain point of view and might bring some limitations, e.g.,
reviewing HAR in a certain area (i.e., health research) [16],
mainly focusing on inertial sensor based HAR [17], comparing
a small number of (i.e., 20) papers [18]. In fact, in addition to
smartphones, there emerge a lot of new mobile devices, e.g.,
smartwatches and smart glasses, and the mobile devices have
been adopted in a large amount of HAR work and applied
in a wide range of areas. Besides, mobile devices contain not
only inertial sensors but also other sensors like touch sensor
and microphone, which are often adopted in HAR. Moreover,
the advancement of activity recognition technology, especially
deep learning based technology, has contributed to a lot of new
HAR work. Therefore, it is necessary to review HAR studies
based on mobile devices in recent years, to advance the further
research in this area. The main differences between existing
reviews and this paper can be found in Table I. We can find
that our paper reviews both the previous and the latest research
work (i.e., from January 2011 to July 2023), takes more mobile
devices (not just smartphone) into consideration, provides a
systematic review on each main component of HAR instead
of focusing on one or two aspects, and surveys quite a lot of
research work (i.e., 161 papers) to demonstrate the research
progress of mobile device-based HAR.

In this review, we aim to provide a first systematic review on
HAR using commercial off-the-shelf (COTS) mobile devices,
i.e., only using the on-board sensors from mobile devices to
get sensor data and performing activity recognition in the
mobile device or a server. Considering the characteristics of
mobile devices, we first analyze the challenges of HAR based
on mobile devices. Then, we review the existing research
work from six aspects, i.e., human activities, sensor data, data
preprocessing, recognition approaches, evaluation standards
and application cases, as shown in Fig. 2. Specifically, we
give a categorization of human activities based on activity
granularities, demonstrate the common sensors used in HAR,
show the preprocessing methods for different types of sensor
data, analyze the data-driven (e.g., supervised learning, semi-
supervised learning, unsupervised learning) and knowledge-
driven recognition approaches, describe the public data sets
and evaluation metrics in HAR, and conclude the typical HAR
application cases. Besides, we also provide the analysis and
comparison of existing work from different aspects. Finally,
we summarize some promising directions for future research.

We make the following contributions in this review.
• To the best of our knowledge, we are the first to provide a

systematic review on mobile device based HAR research
work from each main aspect, including human activities,
sensor data, data preprocessing, recognition approaches,
evaluation standards, and application cases.

• We demonstrate the challenges and promising directions
in mobile device based HAR, while considering the
particularity of mobile devices.

• We present a new categorization method for human
activities, from the perspective of activity granularities.

• We provide deep analysis and comparison of the existing
work from each main aspect in HAR, especially in the
aspect of recognition approaches.

Human activities

Sensor data

Data preprocessing

Recognition approaches

Evaluation standards

Application cases

Exercise assessment

Daily life monitoring

Human computer interaction

Security and authentication

Recognition performance

Time latency

Implementation ways

Data-driven approaches

Knowledge-driven approaches

Hybrid approaches

Denoising

Data segmentation

Data transformation

Single type of sensors

One category of sensors

Different categories of sensors

Body-level activities

Arm-level activities

Extremity-level activities

Vital sign-level activities

Multi-level activities

Energy consumption

Available data sets

Fig. 2. The framework of this review.

II. OVERVIEW OF HUMAN ACTIVITY RECOGNITION

A. Problem definition

As defined in [2], the input for human activity recognition is
sensor data, while the output is a type of activity. In this paper,
we use D = [d1, dt] to represent the collected sensor data.
Here, di, i ∈ [1, t] represents the sensor data at time i, it can
be time-series data (e.g., acceleration), image frames, or multi-
modal data (e.g., images and acoustic signals). According to
the beginning and the ending of an activity, the sensor data D
is split into m segments {Dj |j ∈ [1,m]} in sequence. Here,
Dj = [djα , djβ ], 1 ≤ jα < jβ ≤ t and (j − 1)β < jα. In
regard to human activities, we use {yk|k ∈ [1, c]} to represent
the set of c possible activities, i.e., c classes of activities. Then,
the goal of HAR can be described as recognizing the data
segment Dj as one type of activity yk. It is worth noting that
the objective of HAR is to recognize activities, i.e., activity
classification. Therefore, the research work focusing on object
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detection, indoor localization and activity tracking does not
belong to the scope of this paper, and will not be surveyed in
this review.

B. Research challenges
Considering the uncertainty of human activities, the mo-

bility of mobile devices, the interferences of environment
noises and other factors, there are several challenges in human
activity recognition based on mobile devices, as shown below.

(1) Difference among intra-class activities: For activities
belonging to one type, they can be different in sensor data.
Take ‘running’ as an example, different users can run with
different speeds, step lengths, foot-lifting heights, etc. Even
for the same user, the same type of activity can be performed
differently. Therefore, the sensor data corresponding to the
same type of activity may have differences in duration, ampli-
tude, frequency, etc. To solve this challenge, the recognition
approaches are expected to focus on key common features
from different sensor data, while ignoring the differences of
intra-class activities.

(2) Similarity among inter-class activities: For activities
belonging to different types, they can be similar in sensor
data. Take ‘walking’ and ‘climbing stairs’ as examples, their
accelerations are similar. When comparing the waveforms of
accelerations, it is difficult to distinguish the two activities.
To solve this challenge, it is expected to introduce appropriate
algorithms to enlarge the key differences between different
activities, while reducing the similarity of inter-class activities.

(3) Interference from null-class activities: The mobile
devices are often worn/carried or close to the user, even the
user performs interference activities or keeps stationary, the
device may continuously record the sensor data of unexpected
activities, i.e., null-class activities [6]. Thus during a period of
time, the sensor data of target activities and that of unexpected
activities can interlace with each other, making it difficult
to obtain the sensor data of target activities. To solve this
challenge, it is expected to introduce appropriate activity
detection methods to extract the sensor data corresponding to
target activities, while eliminating null-class activities.

(4) Fixed classes of recognized activities: In a real world
scenario, there are a great many classes of human activities.
However, in the existing HAR research work, the classes of
recognized activities are often fixed. That is to say, these HAR
approaches can only recognize the seen/known activities, while
unable to recognize a new-class activity, thus the applicable
scenario of a HAR approach can be very limited. To solve
this challenge, it is expected to research the incremental HAR
algorithm, which has the ability to recognize both the old-class
and new-class activities.

(5) Heterogeneity of multimodal sensor data: The mobile
device is often integrated with many different sensing modules,
thus the sensor data used for HAR can be multimodal, e.g.,
acoustic signals and images. Different from unimodal sensor
data, multimodal sensor data is heterogeneity and often has
different sampling rates, different data representation, different
data processing methods, etc. To solve this challenge, it is
expected to appropriately fuse multimodal data and tolerate
the difference of sensor data in different modalities.

(6) Difficulty of data segmentation: The human activities
occur in a continuous way, it is challenging to detect the start
or the end of an activity, especially for fine-grained activities
with tiny movements. Besides, when multiple activities occur
in the same duration, e.g., performing hand gestures while
walking, it is difficult to extract the sensor data corresponding
to a specific activity. In addition, some composite activities like
washing and cooking consist of a series of atomic activities,
it is also challenging to exactly segment the sensor data
corresponding to a composite activity. To solve this challenge,
it is expected to consider the application scenario, perform data
transformation, filter interference data etc to segment data.

(7) Large cost of data annotation: When the user performs
an activity with the mobile device, the sensor data correspond-
ing to the activity can be generated. However, obtaining a
great deal of sensor data for training and testing means that
we need to invite a large number of users and annotate the
sensor data corresponding to each activity. The labor cost can
be huge. To solve this challenge, it is expected to propose
lightweight recognition approaches without training or training
with a small number of samples.

(8) Uncertainty from different domains: Considering
the effects of environment noises, different user habits, and
different device types, the distribution of sensor data corre-
sponding to human activities may change every now and then.
Thus the HAR approach suitable for one domain (e.g., the
environments, users and devices are fixed) may not work well
in another domain (e.g., at least one aspect of environments,
users and devices changes). To solve this challenge, it is
expected to study the HAR algorithm with domain adaptation,
to ensure the HAR approach works in different domains or
adapts to new/unseen domains.

(9) Noises from device movements: A mobile device is
often carried/worn by user, thus when the user moves, the
device often moves as well. That is to say, the status of
mobile device can change from time to time, thus introducing
unexpected noises. These noises may make the collected
sensor data of human activities deviate from the original/actual
data, leading to unstable or poor performances of HAR. To
solve this challenge, it is expected to introduce denoising
methods, or appropriately use noisy sensor data to improve
the noise tolerance of HAR approach.

(10) Limited resources of mobile devices: As mentioned
before, the computing capability of mobile devices cannot be
compared with desktop computers. In addition, the running
time of a mobile device is often limited by the battery.
Consequently, some approaches adopted in desktop computers,
e.g., deep learning-based recognition approaches with high
requirement of resource, can hardly work on mobile devices.
Therefore, it is expected to propose lightweight recognition
approaches for mobile devices, to recognize human activities
in high accuracy, low latency and low energy consumption.

III. HUMAN ACTIVITIES

In recent years, we have witnessed the development of
human activity recognition technology. At first, people focused
on recognizing simple and coarse-grained activities, e.g., sit-
ting, walking, running, climbing stairs, etc. Nowadays, people
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Human activities
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lip reading, 
blinking, etc.
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activities

Breathing, 
heart beating, 
snoring, 
cough, 
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sleep apnea, etc.

Vital sign-level 
activities

Swimming, 
cleaning, 
cooking, 
washing,
eating, 
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sleeping, 
working, etc.

Multi-level 
activities

Fig. 3. Human activities in HAR research work.

pay more attention to complex and fine-grained activities,
e.g., typing with fingers, lip reading, breathing, etc. Usually,
the fine-grained activity recognition can be more challenging,
since the sensor data is more easily buried in noises. In
this section, we will review the research work based on the
granularities of activities, i.e., body-level activities, arm-level
activities, extremity-level activities, vital sign-level activities
and multi-level activities, as shown in Fig. 3.

A. Body-level activities
Body-level activities refer to the activities mainly caused

by the movement of torso, such as walking, running, climbing
stairs, lying, sitting, and so on. Most of body-level activities
can be found in transportation [33][34], and daily life [35][36].
The accelerometer [37] and the 6-axis inertial sensor (i.e.,
the combination of accelerometer and gyroscope) [38] are
often used for body-level activity recognition. For example,
Hemminki et al. [39] adopted the accelerometer of smartphone
to detect transportation modes like walking, taking a bus,
taking a train, riding the metro, and taking a tram. Suarez et al.
[40] used the accelerometer of a smartphone to recognize the
activities like walking, walking upstairs, walking downstairs,
sitting, standing and lying, while the recognition accuracy
achieved 95%. Gong et al. [41] utilized the 6-axis inertial
sensor of a smartphone or smartwatch to recognize the activi-
ties including walking, running, climbing stairs, jumping, etc.
Considering that the device’s (i.e., sensor’s) placement can af-
fect the HAR performance, Brajdic et al. [37] researched walk
detection and step counting with unconstrained smartphones.
Chang et al. [36] presented unsupervised domain adaptation
(UDA) algorithms to address the problem of wearing diversity
of wearable sensors. In regard to the recognized body-level
activity, e.g., gaits, it can also be used for user authentication
[42], assessing brain health [43], or other scenarios.

B. Arm-level activities
Arm-level activities refer to the activities mainly caused

by the movement of arms, including doing the front raise
[44], using the steering wheel [45][46], brushing teeth [47],
writing in the air [48], etc. Many arm-level activities can be
found in fitness exercises [44][49], daily life [47] and human-
computer interactions [48]. The 6-axis inertial sensors (i.e.,

the combination of accelerometer and gyroscope) [50], 9-
axis inertial sensors (i.e., the combination of accelerometer,
gyroscope and magnetometer) [51] and microphones [52] are
often used for arm-level activity recognition. In regard to the
device, to capture arm movements, the smartwatch containing
inertial sensors was often used and worn on the wrist. For
example, a wrist-worn smartwatch containing the 6-axis iner-
tial sensor was used to recognize free-weight exercises (e.g.,
front raise, bench press, etc) and daily gestures (e.g., shaking
hands, drinking the water, etc). A wrist-worn smartwatch
containing the 9-axis inertial sensor was adopted to capture the
moving trajectory [49], angles [51] and contours [48] in arm-
level activities for table-tennis stroke recognition [49], steering
wheel usage tracking [51] and in-air handwritten character
recognition [48]. In addition to smartwatch, the smartphone
placed nearby the body was also adopted for arm-level activity
recognition. Specifically, Xu et al. [53] utilized the microphone
of smartphone to recognize inattentive driving events including
fetching forward, picking up drops, turning back, and eating
or drinking, and achieved the accuracy of 94.80%. Korpela et
al. [52] utilized the microphone of smartphone to recognize a
series of activities in toothbrushing, e.g., brushing front teeth
outer surface, brushing front teeth inner surface, brushing back
teeth outer surface, and brushing back teeth inner surface, to
evaluate tooth brushing performance.

C. Extremity-level activities

Extremity-level activities refer to the activities caused by
head [54], hands [55][56], fingers [57][58], lips [59][60],
tongue [61], eyes [62], etc. When comparing with the macro
body movements or arm movements, extremity-level activities
usually belong to micro movements and often occur in human-
computer interactions, e.g., handwriting [63][64], hand vibra-
tion [65], finger-level writing [66], typing [67][68], swiping on
the touch screen [69][70], lip reading [71], tongue-jaw moving
[61], blinking [72][73] etc, as shown in Fig. 3. Many types of
sensors, e.g., the 6-axis inertial sensor [74][75], microphone
[76][71], camera [77][78] and touch sensor [79], were used
in extremity-level activity recognition. For example, Yi et al.
[54] utilized the 6-axis inertial sensor of smart glasses to
recognize eight head gestures (e.g., nod, shake, left, right 3
times, etc), and achieved the accuracy of 96%. Liu et al. [80]
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TABLE III
CHARACTERISTICS OF ACTIVITIES IN DIFFERENT LEVELS

Activity Commonly-adopted sensor Device Placement Granularity Recognition Application

Body-Level A, 6-axis IMU SP, SW Hand, pocket, bag, waist, wrist Coarse Easy DLM

Arm-Level 6-axis IMU, 9-axis-IMU SP, SW Wrist Medium Moderate EA, DLM, HCI

Extremity-Level A, MC, C, T, 6-axis IMU SP, SW, SG Head, near the hand/finger,
wrist, hand, finger Fine Hard HCI, S&A

Vital Sign-Level A, MC, C, 6-axis IMU SP, SW Wrist, near the body, pocket,
backpack, chest, finger Very fine Very hard DLM, S&A

Multi-Level A, 6-axis IMU SP, SW, SG Wrist, ankle, head, chest,
hand Mixed Variable EA, DLM, HCI

A: Accelerometer, MC: microphone, C: Camera, T: Touch sensor, IMU: Inertial Measurement Unit, SP: Smartphone, SW: Smartwatch, SG: Smart glasses
EA: Exercise assessment, DLM: Daily life monitoring, HCI: Human-computer interaction, S&A: Security and authentication

utilized the 6-axis inertial sensor of smart watch to recognize
the handwritten characters. It is worth noting that due to
the difference of application scenarios, even for the same
kind of activities, it is possible to adopt different types of
sensors for recognition. Take finger gesture recognition as an
example, the 6-axis inertial sensor of a smartwatch was used
to infer typing activities on a laptop keyboard [75] with the
keystroke detection rate of 94.6%, and the embedded camera
of a smartphone was used to recognize typing activities on a
paper keyboard [77] with an accuracy of 95%. While for the
same type of sensor (e.g., microphone), it can also be used for
recognizing different kinds of activities (e.g., handwriting [81],
lip reading [82]). However, to recognize tiny eye movements,
e.g., gaze gestures, the camera rather than other sensors was
often used to capture the activities in pixel levels [78][83]. In
regard to the recognized extremity-level activities, besides for
human-computer interactions, they were also used in security
issues [67][84] and user authentication [85][86].

D. Vital sign-level activities

Vital sign-level activities refer to the very micro activities
caused by human organs, e.g., breathing [87], heart beating
[88], cough [89], sleep apnea [90], etc. To detect vital sign-
level activities, the devices were often worn [91] by the user
or placed close to [92] the target organ. The sensors like
accelerometer [92], 6-axis inertial sensor [91], microphone
[89] and camera [88] have been used for monitoring vital sign
changes. For example, Sun et al. [87] used the microphone of a
smartphone to recognize sound-related respiratory symptoms,
e.g., sneeze, cough, sniffle, throat clearing, where more than
82% of respiratory symptoms were correctly classified. Wang
et al. [92] utilized the accelerometer of smartphone to capture
heartbeat signals for user authentication, and achieved the
accuracy of 96.49%. Chen et al. [93] utilized the accelerometer
of smartwatch to detect sleep apnea. Considering that different
users have different vital sign changes, thus vital signs like
breathing [94], heart beating [92] and cardiac biometrics [88]
were often used for user authentication.

E. Multi-level activities

In the previous subsections, human activities are mainly
classified into four categories, i.e., body-level, arm-level,

extremity-level and vital sign-level activities. However, in
fact, human activities may not be limited in one of the four
categories, they can be a combination of any two, three, or
four categories of the above activities. Correspondingly, the
human activities are called multi-level activities, which can
occur in exercises [95][96], daily life [97][98] and human-
computer interactions [99][100]. For fitness exercises, the
activity like swimming [101] consists of both body movements
and arm movements. While for a set of fitness activities,
they can consist of both body movements like running and
rowing as well as arm movements like barbell bench press
and dumbbell raise. For example, Guo et al. [102] utilized
the 6-axis inertial sensor of smartwatch to recognize fitness
exercises (e.g., running, rower, dumbbell bench press, cable
crossover, etc), and the recognition accuracy achieved above
90%. In daily life, human activities are more complex, e.g.,
cleaning [103], cooking [104], washing dishes [105], drinking
[106], sleeping [107] etc, they are the combination of multiple
categories of activities. For example, Voigt et al. [103] utilized
the depth camera of smartphone to recognize nine complex
daily activities, including working on a laptop, watching TV,
reading a book, operating a phone, cleaning, sleeping, cooking,
eating, and washing dishes. Chang et al. [108] utilized the
inertial sensor, microphone and light sensor of smartwatch
to monitor sleeping, which includes body rollovers, arm rais-
ing, hand moving, snoring, coughing, and so on. In human-
computer interactions, take sign language [109] as an example,
it includes arm movement, hand movement, finger movement,
etc. Specifically, Part et al. [110] utilized the depth camera of
smartphone to recognize 50 sign language words and achieved
the accuracy of 91%, aiming to reduce the communication
gap between verbal communication and sign language. Until
now, many kinds of sensors, including accelerometer [111],
6-axis inertial sensor [112][109], 9-axis inertial sensor [113],
microphone [114], camera [99][110] etc, have been used for
multi-level activity recognition.

F. Learned lessons about human activities

Characteristics of activities in different levels: In Table
III, we analyze the characteristics of activities in different
levels from multiple aspects. On the aspect of adopted sensors,
whichever level the activities belong to, they often adopted
inertial sensors for activity sensing. Besides, coarse-grained
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Fig. 4. Researched human activities.

activities (i.e., body-level activities) tended to use accelerom-
eter for sensing, while fine-grained activities (e.g., extremity-
level activities) tended to use microphone for sensing. In
regard to multi-level activities, they tended to adopt multiple
sensors to get richer data for activity sensing. On the aspect
of adopted devices, whichever level the activities belong to,
they often adopted smartphone and smartwatch for activity
recognition. Only extremity-level activities and multi-level
activities adopted smart glasses for head or eye movement
recognition. On the aspect of device placement, smartphone
can be placed in many positions (e.g., hand, pocket, waist,
other positions on or near the body), smartwatch was often
worn on the wrist, while smart glasses were often worn on
the head. On the aspect of activity granularities, from body-
level activities to vital sign-level activities, the granularity of
activity changes from coarse to very fine, i.e., the granularity
becomes smaller and smaller. In regard to multi-level activities,
they can contain activities in different granularities. On the
aspect of recognition difficulty, as the granularity of activity
decreases, the recognition difficulty increases, since the sensor
data of very fine-grained activities is easily affected or buried
by noises. In regard to multi-level activities, the recognition
difficulty is affected by activities in different levels. On the
aspect of application scenarios, most of activities (e.g., body-
level, arm-level, vital sign-level, and multi-level activities)
were used for daily life monitoring, while extremity-level
activities were often used for human-computer interactions,
security and user authentication. Sometimes, arm-level (e.g.,
free weight exercises, in-air writing) and multi-level activi-
ties (e.g., exercises, cross-device gestures) also occurred in
exercise assessment or human-computer interactions, while
the vital sign-level activities with uniqueness also occurred
in security and user authentication.

Researched activities over time: In Fig. 4(a), we provide
the statistics of researched activities from reviewed works. We
can find that extremity-level activities were the most popular
activities in previous research, especially finger gestures and
hand gestures, while the body-level and multi-level activi-
ties were also paid good attention. In regard to the arm-
level or vital sign-level activities, they were less researched.
This is mainly caused by the demand of application, since
human-computer interactions based on hand or finger ges-
tures, and daily life monitoring based on locomotions or
complex/specific activities often attract a lot of attention. To
further analyze the research trends in human activities, we
also provide the statistics of researched activities in each
year. As shown in Fig. 4(b), more and more mobile device
based HAR research work emerged over time, especially after
2016. Besides, the levels of activities in research also changed
over time. Earlier (i.e., before 2015), the number of HAR
research work based on mobile devices was limited, and many
of the researched activities belonged to coarse-grained body-
level or multi-level activities. Later (i.e., after 2015), the
number of HAR research work based mobile devices increased
apparently, and most of researched activities changed to fine-
grained extremity-level activities. Recently (i.e., after 2020),
the number/ratio of body-level activities increased, this is be-
cause recent HAR work tended to adopt public datasets which
are usually consisted of body-level activities. Nevertheless, the
extremity-level activities, especially hand or finger gestures,
had attracted enough attention in HAR research work.

Open problems: In the existing research work, the re-
searched activities usually belonged to fixed classes, and each
activity was recognized as one class. However, in practice, all
kinds of activities occur uncertainly, thus detecting the target
activities from continuous sensor data while getting rid of the
effect from interference activities is rather challenge and has
not been studied well. Besides, sometimes, multiple activities
can occur at the same time, e.g., eating while watching TV. In
this case, should the activity during this time be classified with
two classes/labels (i.e., eating, watching TV)? That is to say,
whether HAR can be formalized as a multi-label classification
problem or not, it still needs further research.

IV. SENSOR DATA

Due to the development of sensing modules, mobile devices
often contain a variety of sensors, e.g., accelerometer, micro-
phone, camera, touch sensor, etc. Usually, one type of sensor
generates one type of data. Consequently, we can get the
sensor data of acceleration, acoustic signals, images/videos,
touch sensor data, etc. To obtain rich sensor data for HAR,
one or more types of sensors can be used. According to the
difference in sensor types, the sensors adopted in HAR can
be classified into single type of sensors and multiple types
of sensors, where the latter can be further classified as one
category of sensors and multiple categories of sensors. In
this section, we will review the research work based on the
category of sensors adopted in HAR, as shown in Fig. 5.
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Fig. 5. Sensors adopted in HAR research work.

(a) Acceleration (b) Acoustic signals (c) Images (d) Touch sensor data

Fig. 6. Typical sensor data.

A. Single type of sensors

Choosing single type of sensors can reduce the complexity
in sensing, data fusion and computation, and it can be found in
a lot of HAR research work. It is worth noting that the sensors
belong to one type, while the number of sensors can be one or
more. Among the sensors, accelerometer, microphone, camera
and touch sensor were often used as single type of sensors for
HAR, as described below.

Accelerometer: Accelerometer measures the acceleration
along three axes of the coordinate system in mobile device.
The raw readings from the accelerometer contain the acceler-
ation of gravity. If we want to describe the motion of device,
we need to get the linear acceleration by removing the accel-
eration of gravity, as the linear acceleration of arm gestures
shown in Fig. 6(a). Accelerometer is a common and low-cost
sensor, which is embedded in almost every mobile device.
Usually, one device only contains one accelerometer, thus
using multiple accelerometers often needs multiple devices
[115][116]. Until now, accelerometer has been used in much
HAR research work, including coarse-grained transportation
mode detection [39], body movement recognition [40][42],
hand gesture recognition [117], fine-grained heartbeat sensing
[92], sleep apnea detection [93], and complex daily activity
recognition [97][104]. Due to the difference of recognition
tasks and the limitation of devices, the adopted sampling rate
of accelerometer can be different, e.g., 16 Hz [118], 20 Hz
[115], 25 Hz [97], 30 Hz [40][104], 30-35 Hz [117], 50 Hz
[40][42], 60 Hz [39], 100 Hz [37][92]. Usually, high sampling
rates are expected for fine-grained activity recognition.

Microphone: Microphone is also a commonly-used sensor
and often used to collect acoustic signals. The sound caused
by human activities can be captured by microphone, as the

sound caused by a keystroke shown in Fig. 6(b), where the
unique features in sounds can be used for activity recogni-
tion. Besides, the microphone is often used together with a
speaker, which emits acoustic signals (e.g., ultrasound), and
the microphone receives the acoustic signals. The changes
of acoustic signals caused by human activities, e.g., phase
changes, can be used for activity recognition. The microphone
has been adopted in a lot of research work [52][119], and
most of activities in these works belong to extremity-level
and vital sign-level activities. For example, handwriting on
a paper [81], handwriting on the desk [63], in-air hand
gestures [76], touch gestures [85], swiping gesture [120],
in-air finger movement/gestures [121], lip reading [71][60],
tongue-jaw moving [61], blinking [73], sleeping [90][107],
sound-related respiratory symptoms [87] and coughs [89]. The
fine-grained activities often occur in human-computer interac-
tions [121][122], security issues [123] and user authentication
[94][85]. In regard to the sampling rate of a microphone, it
can be set to 8 kHz [94], 16 kHz [87], 32 kHz [89], 44.1 kHz
[119][59], 48 kHz [123][114], which are much higher than
that of an accelerometer.

Camera: Considering the rich information in images or
videos, camera was also adopted in HAR. As shown in
Fig. 6(c), an image consists of pixels and provides space
information, it is quite different from the time-series data in
Fig. 6(a) and Fig. 6(b). To monitor human activities during a
period of time, consecutive image frames or videos are often
used. However, due to the heavy computation overhead in
image processing, the images can be transmitted to a computer
or remote server for processing [83]. Otherwise, optimization
for image processing in mobile devices is expected [77]. Until
now, the camera has mainly been adopted in human-computer
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TABLE IV
CHARACTERISTICS OF EACH TYPE OF SENSOR

Sensor Measurement Data Device Commonly-sensed Activities Sampling Rate FU CO

Accelerometer Acceleration
along x, y, z-axis TS data SP, SW, SG

Body-level: transportations, locomotions;
Extremity-level: hand gestures;
Vital sign-level: heart beat, sleep;
Multi-level: daily activities

16Hz-100Hz High Low

Gyroscope Angular velocity
along x, y, z-axis TS data SP, SW, SG All levels: (used with accelerometer) 8Hz-500Hz High Low

Magnetometer Geomagnetic field
along x, y, z-axis TS data SP, (SW), SG Arm-level: brushing, interactions, fitness

(used with accelerometer and gyroscope) 50Hz-100Hz Medium Low

Microphone Acoustic signal TS data SP, SW, SG
Extremity-level: handwriting, finger gestures,
lip reading, blinking;
Vital sign-level: respiratory, coughs

8kHz-48kHz High Medium

Camera Surroundings in pixels Image/video SP, SG Extremity-level: typing, eye movements;
Vital sign-level: cardiac motion patterns 15Hz-60Hz Medium High

Touch sensor Touch size, coordinate,
pressure TS data SP, SW, SG Extremity-level: handwriting, touch gestures 60Hz Medium Low

GPS Geographical location TS data SP, SW, SG Multi-level: daily life activities
(used with other sensors) 1Hz Low Low

Barometer Atmospheric pressure TS data SP, SW Body-level: transportation mode;
Multi-level: exercises (used with other sensors) 1Hz-25Hz Low Low

Proximity sensor Distance or proximity TS data SP, SG
Body-level: daily activities;
Extremity-level: finger gestures, eye movements;
Multi-level: interactions (used with other sensors)

100Hz Low Low

Light sensor Ambient light level TS data SP, SW, SG
Extremity-level: finger gestures,
Multi-level: exercises, daily life activities
(used with other sensors)

33Hz-100Hz Low Low

SP: Smartphone, SW: Smartwatch, SG: Smart glasses, TS: Time-series, FU: Frequency of usage, CO: Computation overhead

interactions [78][100] and user authentications [62][88], while
the human activities are often associated with fine-grained ac-
tivities. For example, doing sign languages [110], recognizing
typing activities [77], sensing eye movements [83], capturing
gaze patterns [62] or cardiac motion patterns in fingertips [88]
for user authentication. When referring to the frame rate of a
camera, it can be set to 15 Hz [77], 30 Hz [83], 60 Hz [88],
etc.

Touch sensor: The mobile device is often configured with
a touch screen for interactions. When touching the screen with
a fingertip, the touch sensor can provide the coordinate of a
fingertip, the touch size, etc. Thus the touch sensor can provide
coordinate/size changes along time, as the trajectory of a slide
operation over time shown in Fig. 6(d). The touch sensor has
been used for human-computer interactions [79][69] and user
authentication [124][125]. For example, using the touchpad of
Google glass to provide 1D handwriting interface [69], using
the touch gesture of a mobile device for user authentication
[125]. In regard to the sampling rate of a touch sensor, the
default sampling rate (e.g., 60 Hz in Samsung Galaxy Note8
smartphone) supported by the device was often adopted.

Others: In addition to the above popular sensors, other
sensors like magnetometer [55], barometer [33] and depth
camera [103] were also adopted as a single sensor in HAR.

B. One category of sensors

One category of sensors refer to the sensors generating
sensor data in a similar format, e.g., time-series data. In
addition, the sensors are often used together and the sensor
data can be processed with similar ways. The inertial sensor
is a typical example which belongs to one category of sensors
and often used to sense motion states or attitudes of targets.

According to the difference in combination of sensors, there
are 6-axis inertial sensor and 9-axis inertial sensor. The 6-
axis inertial sensor means the combination of accelerometer
and gyroscope, while the 9-axis inertial sensor means the
combination of accelerometer, gyroscope and magnetometer,
as described below.

6-axis inertial sensor: The 6-axis inertial sensor measures
the motion, i.e., the acceleration and angular velocity, along
three axes of the coordinate system in mobile device. The ac-
celerometer can describe the velocity and displacement, while
the gyroscope can measure the rotation of target. The 6-axis
inertial sensor has been deployed in smartphones [50][112],
smartwatches [126] and smartglasses [54], and widely adopted
in HAR to measure the movements of bodies [41], arms [50],
hands [65], fingers [127][66] and even vital sign changes [91].
The 6-axis inertial sensor based HAR has benefited a variety
of applications, including exercise assessment [102][44], daily
activity monitoring [106][35], human-computer interactions
[109][80], and user authentication [57][128]. In addition, the
6-axis inertial sensor was also used to infer human activities in
security attacks, especially in password [74][84] or text input
inference [75], which motivated us to improve the security
mechanism of mobile devices.

9-axis inertial sensor: When comparing with the 6-axis
inertial sensor, 9-axis inertial sensor can additionally get the
magnetic field intensity, due to the introduction of magne-
tometer, which can be alternatively called as compass. By
using the 9-axis inertial sensor, it is possible to infer the earth
coordinate system based on the directions of geomagnetic
field and gravity. Consequently, the 9-axis sensor data can be
transformed into a fixed coordinate system [47] to calculate
trajectories [49], contours [48], angles [51] [129] caused by
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TABLE V
COMPARISON OF SENSORS IN SINGLE TYPE, ONE CATEGORY AND DIFFERENT CATEGORIES

Single type One category Different categories

Pros

Processing: The sensor data is in
the same format. The complexity of
data collection and data processing
is low.

Sensing: The sensors can provide complementary
sensor data and improve the understanding of some
activities.
Processing: The data in similar formats can be
processed with similar methods.

Sensing: The sensors can provide multi-modal sensor data from
different aspects for activity sensing, thus are possible to improve
the understanding of human activities and improve the performance
of activity recognition.

Cons

Sensing: The unimodal sensor data
may limit the range of recognized
activities and affect the activity
recognition performance.

Sensing: The sensor data in a category still can
not provide a full understanding of many human
activities.
Sampling and fusion: The synchronization of data
sampling and the fusion of sensor data are expected.

Sampling and fusion: It needs to synchronize sensors in different
sampling rates, fuse sensor data in multi-modals, and balance the
possible conflicting measurements from different sensors.
Processing: Sensor data in different formats needs to be processed
in different methods.

human activities for exercise recognition [49][129], human-
computer interactions [48], daily activity monitoring [47], etc.

C. Different categories of sensors
Different categories of sensors refer to the combination of

sensors which generate sensor data in different formats, e.g.,
acoustic signals and images. Besides, the sensor data is often
processed with different methods. In current HAR research
work, the accelerometer, 6-axis inertial sensor, 9-axis inertial
sensor are often used with other sensors to form a combination
of different categories of sensors, e.g., the combination of
accelerometer and touch sensor, the combination of 6-axis
inertial sensor and microphone, the combination of 9-axis
inertial sensor, barometer and ambient light sensor.

Accelerometer +: Due to the popularity of accelerometer,
the combination of accelerometer and other sensors, which
is represented as “accelerometer +”, was adopted in HAR
research work, to get richer sensor data. Usually, the touch
sensor was added to sense touch gestures [130], the mi-
crophone was added to capture the acoustic signals [131],
the GPS module was added to infer the location [105], the
magnetometer was added to calculate the orientation [132],
while other sensors like camera [111] and infrared proximity
sensor [72] were introduced for specific recognition tasks.
The combination “accelerometer +” has been applied in re-
habilitation training [132], daily life monitoring [72][105],
security attacks (e.g., handwriting eavesdropping [131] ), user
authentication [130], etc.

Inertial sensor +: For convenience, we use “inertial sensor
+” to represent the combination of inertial sensor and other
sensors, where the inertial sensor can be “6-axis inertial
sensor” or “9-axis inertial sensor”. Among the combinations,
a microphone [133][98] was often used together with the
6-axis inertial sensor in human-computer interactions [134],
security attacks [67], etc. While other sensors like GPS mod-
ule [46][113], proximity sensor [99], touch sensor [70][86],
gravity sensor [64], camera [108][113], ambient light sensor
[101][108], barometer [101] etc were adopted together with the
6-axis or 9-axis inertial sensor based on the specific application
scenarios, e.g., driving behavior sensing [46][113], sleeping
monitoring [108], rehabilitation [96], swimming recognition
[101], user authentication [86], etc.

Others: In addition to the previous combinations depending
on accelerometer and inertial sensor, other combinations were
also proposed for HAR. For example, combining gyroscope,
microphone, proximity sensor and ambient light sensor to

(a) Distribution of adopted sensors (Note: Acc: Ac-
celerometer, Mic: Microphone, Cam: Camera, IMU:
Inertial Measurement Unit)

Number of papers

Ye
ar

(b) Adopted sensors along with time

Fig. 7. Adopted sensors.

sense a user’s finger movement [58], using microphone and
camera to track fingers in 3D space [135], combining mi-
crophone and gyroscope for typing activity detection and
recognition [68]. The combination of sensors can be affected
by many factors, e.g., the application scenario, the recognition
task, the configuration of device, etc.

D. Learned lessons about sensor data

Characteristics of common sensors: In Table IV, we
analyze the characteristics of common sensors from differ-
ent aspects. On the aspect of measurements from sensors,
the accelerometer, gyroscope, and magnetometer provide the
sensor data along each axis of the device’s coordinate system,
and they were usually adopted for motion state sensing. The
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microphone provides the acoustic signals along time, and it
was often used to collect the audible sounds or receive the
reflected acoustic signals generated from speaker. The camera
provides the visual and spatial information about surroundings.
The touch sensor provides the sensor data like touch sizes
and coordinates of on-screen operations. These six sensors
were often used in HAR research work, while other sensors
were usually adopted for specific tasks. Specifically, the GPS
module provides the geographical location of device. The
barometer provides the atmospheric pressure, and it can be
used to infer the altitude. The proximity sensor provides the
distance or proximity to the device. The light sensor provides
the light level, and it was used to sense the environment. We
can find that each sensor provides the unique measurement
and sensors are difficult to be replaced with each other. On
the aspect of data format, most of sensor data belongs to
time-series data, while visual data captured by camera is rep-
resented as images/videos which also contain spatial domain
information. On the aspect of device containing sensors, a
smartphone is often configured with all common sensors, a
smartwatch is often lack of camera and proximity sensor,
and smart glasses are often lack of barometer. Besides, due
to differences in models, the same type of device may be
configured with different sensors, e.g., LG Watch Urbane
has a magnetometer while Motorola Moto 360 smartwatch
does not have a magnetometer. Thus the device model should
also be considered in sensor selection. On the aspect of
sensed activities by each sensor, the accelerometer, gyroscope,
magnetometer can be used together to recognize many activ-
ities, from coarse-grained body-level activities to very fine-
grained vital sign-level activities. The microphone, camera,
touch sensor were often used for extremity-level or vital
sign-level activity recognition. In regard to GPS, barometer,
proximity sensor, and light sensor, they were often used to
get richer information about devices and environments for
multi-level or specific activity recognition. On the aspect of
sampling rates, most of sensors often adopted the sampling
rate ranging in [20, 100]Hz. Differently, the microphone often
worked in a high sampling rate (i.e., [8k, 48k]Hz), while the
GPS and barometer often worked in a low sampling rate (i.e.,
below 20Hz). On the aspect of frequency of usage, the ac-
celerometer, gyroscope, and microphone were most frequently
used sensors, the magnetometer, camera, and touch sensor
were also commonly used sensors, while GPS, barometer,
proximity sensor, and light sensor were less commonly used.
On the aspect of computation overhead, the images/videos
captured by camera often require high computation overhead,
the acoustic signals captured by microphone cause a moderate
computation overhead, while other sensor data often has a low
computation overhead. To adopt suitable sensors for activity
recognition, the characteristics of sensors are often considered.

Comparisons of sensors in different categories: In Table
V, we analyze the advantage and disadvantage of adopting
sensors in single type, one category or different categories,
from the aspects of sensing mechanism, processing method,
sampling mode and data fusion strategy. Usually, using single
type of sensor can reduce the overhead of data processing and
fusion, but the unimodal sensor may limit the recognition per-

formance and application scenario. When using one category
of sensors, it is possible to get richer sensor data and process
the data with similar methods, but sensors in one category
may still not provide enough information of human activities
and require further computation for data fusion. When using
different categories of sensors, it is possible to get enough
information of human activities and improve recognition per-
formance, but the sensors in different modalities often bring
the difficulty of data synchronization, data processing, data
fusion and more computation overhead. Considering both the
advantage and disadvantage of choosing sensors in single type,
one category and different categories, it is difficult to conclude
which is the best choice for sensor selection. Usually, the
balance between performance and overhead should also be
considered in sensor selection.

Adopted sensors over time: In Fig. 7(a), we provide the
statistics of adopted sensors from reviewed works. It can be
found that single type of sensor was most frequently used
in HAR work, especially the accelerometer and microphone.
The one category of sensors were also commonly used,
especially the 6-axis inertial sensor (i.e., 6-axis IMU), which
is the most popular sensor unit in HAR work. In addition,
the different categories of sensors were also used for HAR,
where the combination “inertial sensor +” was popular. To
further analyze the research trends in adopted sensors, we
also provide the statistics of adopted sensors in each year.
As shown in Fig. 7(b), from the past to the present, the single
sensor is aways popular in mobile device based HAR work,
where the accelerometer was often adopted during these years
while microphone was mainly adopted from 2015. The single
category of sensors, especially the 6-axis inertial sensor unit,
were mainly adopted after 2015 and had become a mainstream
sensor unit in recent years. In regard to the different categories
of sensors, especially the combination “inertial sensor+”, they
had been adopted in HAR work and attracted more attention
after 2018. Currently, the accelerometer, microphone, inertial
sensor unit, or the combination “inertial sensor+” have been
widely adopted and can be found in most of HAR work.

Location of sensor data: The collected sensor data of
human activity can be placed on the mobile device or sent to
a server. The location of sensor data is usually affected by the
stage in HAR and the adopted recognition approach. Firstly,
before the beginning of HAR, the collected sensor data is often
sent to a server for establishing the training dataset or training
a model for HAR. Secondly, during the process of HAR, if the
adopted recognition approach is an online approach, the sensor
data is processed on mobile device. If the adopted recognition
approach is an offline approach, the sensor data is sent to a
server for processing. Thirdly, after the ending of HAR, the
sensor data can be stored on the mobile device or a server, or
even canceled. In regard to transmitting the sensor data to a
sever, the Bluetooth, WiFi, and mobile data network can be
adopted for communications.

Open problems: Although many devices (i.e., sensors) are
available in daily life, how to collect large-scale sensor data
for activity recognition is still challenging. Thus researchers
tended to invite some subjects (i.e., usually less than 50
people) to provide sensor data or participant into HAR, which
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Fig. 8. Data preprocessing methods in HAR research work

may decrease the generalization of HAR. Besides, although
many kinds of sensors can be adopted to provide multimodal
data for activity recognition, the existing work tended to
combine the recognition results based on unimodal sensor data,
thus how to fuse the multimodal data at early stage has not
been studied well. In addition, considering the advantage and
disadvantage of a sensor, how to utilize the sensor in one
modality to assist the sensor in another modality for better
HAR still deserves further study.

V. DATA PREPROCESSING

When getting the sensor data, it is necessary to preprocess
the raw data and provide appropriate data for following
activity recognition. Usually, we first need to remove noises
or outliers from raw sensor data. Then, we need to extract
the data segment corresponding to human activities, i.e., data
segmentation. After that, we need to adopt suitable data
transformation methods for different types of sensor data.
In Fig. 8, we summarize the common methods used for
data preprocessing in mobile device-based HAR, including
denoising, data segmentation and data transformation.

A. Denoising

Due to the uncertainty of human activities, the drift of
sensor data, the movement of sensing devices and the in-
terferences from environments, the raw sensor data often
contains noises, which should be removed. The moving av-
erage smoothing method [37][112] was widely used to re-
move the high-frequency noise from raw sensor data. Sup-
pose the sensor data is x = (x1, x2, . . . , xi, . . . , xn−1, xn),
i ∈ [1, n], then we can use the moving average method with
the window size m to calculate the denoised sensor data
x′ = (x′1, x

′
2, . . . , x

′
i, . . . , x

′
n−1, x

′
n), as shown in Eq. (1).

x′i =


∑m−1

2

j=−m−1
2

xi+j

m m = 2k + 1, k ∈ N∑m
2

−1

j=−m
2
xi+j

m m = 2k + 2, k ∈ N

(1)

As shown in Fig. 9(a), by applying the moving average
smoothing method for the raw data (i.e., blue line), we get the
smoothed sensor data (i.e., red line), which replaced the raw
data by averaging several adjacent data points to reduce noises.

When changing the weights of data points, the exponentially-
weighted moving average (EMA) filter [97] was proposed. In
addition, the Savitzky-Golay filter [84] and other low-pass
filters [47][91] were also proposed to remove the high fre-
quency noises [84]. In fact, besides high-frequency noises, the
low-frequency noises may also need to be removed, thus the
high-pass filter [57][90] was proposed. While the Butterworth
filter [59] and total variation filter (TV filter) [118] were
adopted to remove both high-frequency and low-frequency
noises. When moving to a specific application scenario, the
noise model can be used to track the noise characteristics [107]
for better understanding the noises. In regard to the outlier
data, the Hampel filter [84] can be used to remove it. The
above methods were usually used for time-series data, e.g.,
inertial sensor data.

B. Data segmentation

To extract the data corresponding to human activities, we
need to segment the denoised sensor data. Usually, a sliding
window moving along with time can be used to extract the
segment based on thresholding or other metrics. The existing
HAR research work often used a fixed-size [47][84][118]
sliding window, while the window size m and the overlap
between sliding windows were determined based on the sam-
pling rate and the recognition task. Usually, the 50% overlap
[52][126][106] was adopted. Considering that the fixed-size
window may split the sensor data of an activity into different
segments, detecting the start and the end of an activity for data
segmentation was proposed. Specifically, to determine the oc-
currence of an activity, the extreme points like the peak/valley
point [91] and the local minimum point [102] were often used.
Suppose the sensor data is x = (x1, x2, . . . , xi, . . . , xn−1, xn),
i ∈ [1, n], then we can use Eq. (2) and Eq. (3) to detect the
local maximum and local minimum in a window, respectively.
Then, the time point corresponding to local maximum (or local
minimum) can be used to split the data into segments.

xi − xj ≥ 0,∀j ∈ [i−m, i+m] (2)

xi − xj ≤ 0,∀j ∈ [i−m, i+m] (3)

In addition, comparing the signal [57], energy levels [123],
variances [112], angle changes [129] or average amplitude
[45] with a certain threshold were also used to detect
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the start, occurrence or end of an activity. Take the av-
erage amplitude as an example, for the sensor data x =
(x1, x2, . . . , xi, . . . , xn−1, xn), i ∈ [1, n], we can use Eq. (4)
to calculate the average amplitude in a window. If x̄ ≥ ε, then
we detect the start of an activity. After that, if x̄ < ε, we detect
the end of the activity. Here, ε is a predefined threshold.

x̄ =
1

m

k+m∑
i=k+1

√
x2
i , k ∈ [0, n−m] (4)

As shown in Fig. 9(b), the start or end of activity is detected by
comparing the average amplitude of sensor data in a window
with a defined threshold. The threshold can be a fixed value
or adjusted at times, e.g., twice the maximum sensor data
[68]. Moreover, instead of calculating the numerical value of
sensor data at some point or in a sliding window, the template
based method [92] was proposed to use cross-correlations on
continuous signals for data segmentation, and the pre-trained
Support Vector Domain Description [61] was adopted to select
the target activity from sensor data.

C. Data transformation

In addition to denoising and data segmentation, it is often
necessary to further preprocess the sensor data, e.g., coordinate
system transformation, time-frequency transformation, color
space conversion, to provide appropriate data for activity
recognition. Take the common sensor data (i.e., motion sensor
data, acoustic signal, image/video) as the example, we sum-
marize some typical data preprocessing methods for each type
of sensor data.

Motion sensor data: Motion sensor data is the general
term for the data generated from accelerometer, gyroscope
or magnetometer, it can be one type of these data or the
combination of two or three types of these data. The motion
sensor data obtained from sensor is measured in the device

coordinate system, as shown in Fig. 9(c), which changes
every now and then. It is difficult to analyze the sensor data
under ever-changing coordinate systems. Therefore, coordinate
system transformation [102][44][84] was often adopted to
make the motion sensor data in a uniform coordinate system,
which can be the earth coordinate system [136] or a user-
defined coordinate system, as shown in Fig. 9(c). Specifically,
we use x, qde to represent the sensor data and quaternion
provided by the mobile device, where x is measured in the
device coordinate system and the quaternion describes the
transformation from device to earth coordinate system. Then,
we can use Eq. (5) to get the transformed sensor data x′ in the
earth coordinate system, where q−1de is a conjugate quaternion
of qde.

x′ = qdexq
−1
de (5)

In addition, we can further use Eq. (6) to transform the sensor
data from device coordinate system to a defined coordinate
system, e.g., human coordinate system in Fig. 9(c), where the
quaternion qhe represents the transformation from human to
earth coordinate system. The qhe is determined by the relative
orientation between human and earth coordinate system, and
can be calculated with Euler angles in the earth coordinate
system [102].

x′′ = (q−1he qde)x(q−1he qde)−1 (6)

After the data is transformed to a unified coordinate system,
it can be used to calculate the velocity [44], rotation angle
[129], moving distance [84] etc of the target. In addition to
coordinate system transformation, Discrete Wavelet Transform
(DWT) [92] was used to decompose the sensor data into
multiple levels of wavelet coefficients to detect the expected
activity pattern, and Fast Fourier Transform (FFT) was used to
transform the sensor data into frequency domain for analysis
[109]. Furthermore, to combine multiple sensors working
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with different sampling rates or locating on different devices,
resampling and synchronization could be adopted. Besides,
considering different scales and units in sensor data, the
data normalization was introduced, especially for machine
learning based methods. In Eq. (7), we show the popular
min-max scaling in data normalization, which can scale the
data to a specified range and eliminate scale differences,
where xmax, xmin mean the max, min value of sensor data
x = (x1, x2, . . . , xi, . . . , xn−1, xn), i ∈ [1, n].

xi =
xi − xmin

xmax − xmin
(7)

Acoustic signal: Acoustic signal means one-dimensional
time-series data collected by microphone, while the source
generating the acoustic signal can be sounds, or sinusoid sig-
nals [114], predefined Training Sequence Code [76], Zadoff-
Chu (ZC) sequence [85], customized Frequency Modulated
Continuous Waves (FMCW) [90] emitted from the speaker.
To enhance the collected acoustic signals, the beamforming
technology from dual microphones can be adopted [71]. In
regard to the microphone, it often works in high sampling rate,
e.g., 44.1kHz, thus the acoustic signals were often analyzed
in frequency domain. Specifically, suppose the sensor data
is x = (x0, x1, . . . , xt, . . . , xn−2, xn−1), t ∈ [0, n − 1],
then we can use Fourier transform to transform the data as
Xk, k ∈ [0, n− 1] in frequency domain, as shown in Eq. (8) .

Xk =

n−1∑
t=0

xt · e−
2πj
n kt (8)

Similarly, Fast Fourier Transform (FFT) [45][119] was also
used to transform the signal into frequency domain, and Short-
Term Fourier Transform (STFT) was proposed to obtain the
time-frequency feature of the acoustic signal clip [81], as
shown in Fig. 9(d). To mitigate frequency selective fading and
avoid signal interference, frequency-hopping mechanism was
proposed [76]. To analyze the data in frequency domain, the
Doppler effect [45][59], Amplitude Spectrum Density (ASD)
[68], Mel Frequency Cepstral Coefficients (MFCCs) [52][123]
were proposed to depict the frequency change, describe the
frequency-domain acoustic channel profile, extract cepstral
features for the sounds, respectively. In addition to these, other
data transformation [61] or preprocessing methods were often
designed based on the specific recognition task. After prepro-
cessing, these characteristics of acoustic signals in frequency
domain can be mapped to human activities.

Image/video: Images or videos are generated from camera,
and they are quite different from time-series data. The video is
consisted of consecutive images and video processing is often
transformed into image processing. An image is consisted of
a series of pixels in two-dimensional space, where the pixel
is usually described in RGB channels. In fact, besides RGB
space, the image can also be transformed into HSV color space
[100], YCrCb space [77], and so on. The color channel com-
ponent can be used to segment the target from image [77] or
detect the variation in pixels caused by human activities [88].
For an image, the approaches like edge detection [77], skin
segmentation [77][100] and Hough transformation [77][83]

TABLE VI
CHARACTERISTICS OF DATA PREPROCESSING METHODS

Method Key focus Difficulty FU CO

Denoising Noise reduction Easy High Low

Data segmentation Activity extraction Easy High Low

Data
transformation

Motion data
Coordinate system
transformation Moderate Medium Low

Acoustic signal
Frequency-domain
analysis Moderate Medium Medium

Image Object extraction Moderate Low Medium

FU: Frequency of usage, CO: Computation overhead

were often used to extract the target area from the image. As
shown in Fig. 9(e), the hands were segmented from the image
based on skin segmentation. In addition, other methods like
the Six-Segmented Rectangular (SSR) filter and the regions
of interest (ROI) were proposed to detect a specific part of
human body (e.g., face or eyes) [62].

D. Learned lessons about data preprocessing

Characteristics of data preprocessing methods: In Table
VI, we analyze the main data preprocessing methods from
different aspects. From the aspect of key focus, denoising was
adopted to reduce the effect of noises, data segmentation was
used to extract the data segment corresponding to an activity
from sensor data, while data transformation was used to get ap-
propriate data for following activity recognition. Specifically,
the data transformation on motion data, acoustic signals, and
images focus on coordinate system transformation, frequency-
domain analysis and object extraction, respectively. From the
aspect of computational difficulty, it is usually easy to perform
denoising and data segmentation, while harder to perform the
complex data transformation. From the aspect of frequency of
usage, denoising and data segmentation were often adopted in
a lot of research work, since it is essential to extract clean and
efficient sensor data corresponding to human activity. In regard
to data transformation, whether adopting it or not depends on
the need of recognition task, recognition approaches, and so
on. Usually, the knowledge-driven approaches or traditional
machine learning based approaches had higher requirements of
data transformation, while deep learning based approaches had
lower requirements of data transformation. From the aspect
of computation overhead, the overhead of denoising, data
segmentation, and data transformation of motion data was
usually low, while the overhead about data transformation
of acoustic signals and images was usually medium, since
the high sampling rate of acoustic signals and very fine-
grained pixel-level information of images often brought more
computation. Nevertheless, although the computation cost is
different, almost all of the methods can be performed on
mobile device, and the computation cost of data preprocessing
is usually acceptable for mobile device. Apparently, all these
data preprocessing methods can also be performed on a server,
and the computation cost on a server is negligible. Based on
the characteristics of common data preprocessing methods, we
can use one or more of them as needed to provide the high-
quality data for following activity recognition.
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Fig. 10. Recognition approaches in mobile device-based HAR work, including data-driven approaches, knowledge-driven approaches, and hybrid approaches.

Usage of data preprocessing: When considering the noises
in sensor data, the uncertainty in the starting and ending time
of an activity, and the changeable formats of the same data
in different coordinates or domains, it is usually necessary to
preprocess sensor data in HAR, before inputting the sensor
data into model/classifier. When adopting data preprocessing,
HAR solutions usually can achieve a better performance. How-
ever, adopting data preprocessing also means bringing extra
computation cost. Nevertheless, according to Table VI, the
computation cost is usually acceptable, and data preprocessing
can be performed on the mobile device or a server. Choosing
the mobile device or a server depends on the working mode
(i.e., online or offline) of a HAR solution. Usually, data
preprocessing and activity recognition are often performed at
the same place, i.e., both on mobile device for an online HAR
solution, or both on a server for an offline HAR solution.
It is rare that data preprocessing is performed on the mobile
device (or server), while activity recognition is performed on a
server (mobile device). Consequently, the data preprocessing
cost is usually small and acceptable for an online solution
on the mobile device, and it is negligible for an offline
solution on a powerful server. Therefore, when considering the
higher performance and acceptable computation cost caused
by data preprocessing, it is usually encouraged to adopt data
preprocessing to achieve a better recognition performance.

VI. RECOGNITION APPROACHES

With the preprocessed sensor data, the recognition ap-
proaches will be adopted to map the sensor data into one
type of activity. Usually, the recognition approaches can be
classified into three categories, i.e., data driven approaches
which use training data to obtain classifiers or clusters for
activity recognition, knowledge driven approaches which uti-
lize domain knowledge to process sensor data for activity
recognition, and hybrid approaches which consist of both data
driven and knowledge driven approaches, as shown in Fig. 10.

A. Data-driven approaches

Due to the difficulty of human activity analysis, data driven
approaches which mainly depend on training data instead of
domain knowledge, have been largely used in HAR. According
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Fig. 11. Supervised learning based HAR

to how the training data is labeled, data driven approaches can
be further classified into supervised learning, semi-supervised
learning and unsupervised learning based approaches, where
the training data is all labeled, partly labeled or not labeled.

1) Supervised learning: Nowadays, most of the existing
HAR work based on mobile devices adopt the supervised
learning based approaches, which utilize the labeled data to
train a machine learning model and use the trained model to
predict/recognize the class of test data. The basic principle of
these approaches is shown in Fig. 11. Firstly, we get the sensor
data D = [d1, dt] corresponding to human activities. Secondly,
we adopt the data preprocessing methods to get the prepro-
cessed data segment Wj = [wjα , wjβ ], 1 ≤ jα < jβ ≤ t of an
activity. Thirdly, we use the feature selection method to extract
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TABLE VII
HANDCRAFTED FEATURES

Domain Features

Time-domain
features

Mean, standard deviation, max, min, root mean square,
kurtosis, skewness, median absolute deviation, zero-crossing
rate, inter-quartile range, variance, trimmean, pairwise cor-
relation, local slope, etc.

Frequency-domain
features

Bandwidth, pitch frequency, number of large frequency
peaks, Mel Frequency Cepstrum Coefficients, the orthog-
onal features extracted by principal components analysis,
frequency power, the dominant frequency, spectral entropy,
etc.

Space-domain
features

Eccentricity, orientation, center of an ellipse, the mean
distance of points in a cell, width, height, area ratio of the
upper section to the lower section of the binarized image,
coordinate vectors, etc.

the feature vector Xj = (f1, . . . , fu, . . . , fn), u ∈ [1, n] from
each data segment Wj . Fourthly, if in the training phase, we
use the training data set {(Xj , lj)|j ∈ [1, N ]} to train the
classifier, where Xj is a feature vector and lj is the label (i.e.,
class) of Xj . Otherwise, if in the testing phase, the feature
vector Xj will be sent to the trained model to get the prediction
probabilities {pjk |k ∈ [1, c]}, where pjk means the probability
that Xj is predicted as the class yk, k ∈ [1, c]. Here, c means
the number of classes, and lj ∈ {yk}. Finally, we choose
the class yk with the maximum probability pjk as the activity
recognition result for Xj . It is worth noting that in Fig. 11,
the independent feature extraction module and classification
module usually appear in traditional machine learning based
methods, while being merged into a single module in recent
deep learning based methods. That is to say, in deep learning
based HAR methods, the preprocessed sensor data rather than
extracted feature is adopted to train the deep learning model,
and the trained model is used to predict/recognize the class of
preprocessed sensor data in test.

Feature selection: To provide a good representation of
sensor data for training, it is necessary to extract appropriate
features from sensor data at first. Previous research work
has paid enough attention on feature engineering, aiming to
extract efficient features based on data analysis. This kind of
features are called as handcrafted features. Recently, due to
the development of deep learning, automated features were
introduced for activity recognition. Next, we will describe the
handcrafted features and automated features used in HAR.

Handcrafted features: In mobile device-based HAR, the
common handcrafted features can be classified into three cat-
egories, i.e., time-domain features, frequency-domain features
and space-domain features, as shown in Table VII. Among
time-domain features, the statistical features [126][95][97]
were widely used, which include the mean, standard de-
viation, max, min, root mean square, kurtosis, skewness,
median absolute deviation, zero-crossing rate, inter-quartile
range, variance, trimmean, pairwise correlation, local slope,
and so on. Besides, other features [49][130][92] like energy,
duration, inter-axis correlation, average peak-to-peak ampli-
tude, peak number, the correlation of data, the coefficients
calculated from Discrete Wavelet Transform, and the prob-
abilities of the hidden states in a Hidden Markov Model
were also introduced based on the recognition tasks. Among
the frequency-domain features, the statistical features [127]

TABLE VIII
CALCULATION OF TYPICAL HANDCRAFTED FEATURES

Time-domain Formula Description

Maximum max{xi}, i ∈ [1, n] Maximum of a segment in a
dimension

Minimum min{xi}, i ∈ [1, n] Minimum of a segment in a
dimension

Mean x̄ = 1
n

∑n
i=1 xi Mean of a segment in a dimen-

sion

Std s =
√

1
n−1

∑n
i=1(xi − x̄)2 Standard deviation of a segment

in a dimension

Var s2 = 1
n−1

∑n
i=1(xi − x̄)2 Variance of a segment in a di-

mension

Skewness
1
n

∑n
i=1(xi−x̄)3

s3
Skewness of a segment in a di-
mension

Kurtosis
1
n

∑n
i=1(xi−x̄)4

s4
− 3 Kurtosis of a segment in a di-

mension

RMS
√

1
n

∑n
i=1 x

2
i Root mean square of a segment

in a dimension

Sum
∑n
i=1 xi Sum of a segment in a dimen-

sion

Freq-domain Formula Description

Bandwidth max{Fi} −min{Fi} Range of frequencies

Entropy −
∑n
i=1 p(Fi) log2 p(Fi) Entropy of discrete FFT compo-

nents

Mean FFT 1
n

∑n
i=1 Fi Mean of FFT distribution

Space-domain Formula Description

Coordinate (xi, yi) Coordinate of a point

Vector (xi − xj , yi − yj) Vector formed by two points

Distance
√

(xi − xj)2 + (yi − yj)2 Distance between two points

Freq: Frequency, Fi: frequency (FFT component)

like mean, standard deviation, max, min etc were often used.
Other features [45][52][131] like bandwidth, pitch frequency,
number of large frequency peaks, Mel Frequency Cepstrum
Coefficients (MFCCs), the orthogonal features extracted by
Principal Components Analysis, frequency power, the domi-
nant frequency and spectral entropy etc were also used based
on the specific recognition tasks. Among the space-domain
features, the statistical features [62] like max, min, standard
deviation, root mean square etc were also used. Besides, other
features [119][79][103] like eccentricity, orientation, center
of an ellipse in an image, the mean distance of points in a
cell, area ratio of the upper section to the lower section in
the binarized image, coordinate vectors etc were proposed
based on the recognition tasks. In Table VIII, we provide
the calculation of some typical handcrafted features. After
all features are obtained, we can get a feature vector f =
(f1, f2, . . . , fi, . . . , fm−1, fm), where fi means the ith feature
and m means the number of features. The feature vector will
be input to classifiers for the following classification.

Automated features: These features are often automatically
generated by deep learning models, e.g., convolutional neu-
ral network (CNN) [81], recurrent neural network (RNN)
[44][128], long short-term memory (LSTM) model [47], etc.
The automated features may capture the hierarchical nature of
an activity [38], the unique characteristics of long continuous
motion [74], the high-level motion features [109], the com-
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Fig. 12. SVM classifier.

prehensive feature from multiple kinds of input data [67], etc.
Usually, it is hard to explain the specific meaning of an element
in the automated feature vector. However, when given enough
training samples, deep learning models can extract more
efficient features. Take the challenge of extracting features
from multi-modal sensor data as an example, deep learning ap-
proaches have adopted the attention mechanism [137], GCN-
based dynamic inter-sensor correlations learning framework
[138], fusion strategies in different levels [133][139], data
augmentation with different-modal data [98] to get efficient
multi-modal features. Besides, to further improve the feature
representation, multi-task strategy [140] and combination of
both handcrafted and automated features were also proposed
[141].

Classification: In supervised learning, when getting the
extracted features, we can use one or more classifiers, e.g.,
Support Vector Machine (SVM), Decision Tree (DT), Random
Forest (RF), K-Nearest Neighbor (KNN), Hidden Markov
Model (HMM) and Neural Network (NN), for activity clas-
sification, as described below. In regard to the research work
using these classifiers, they can be found in Table IX, X, XI.

SVM: The SVM is a maximum margin classifier [13], which
aims to find a hyperplane to classify the data points in a high
dimensional space [26][142]. As shown in Fig. 12, SVM aims
to find a plane, i.e., the red plane, to separate the ‘+’ class
and the ‘-’ class as far as possible. Suppose the N training
samples for SVM are D = {(x1, y1), . . . , (xi, yi), (xN, yN )},
and the hyperplane is described with Eq. (9). Here, xi means
the feature vector of the ith sample, while yi ∈ {+1,−1} is the
label of xi. In the training stage, the classifier is trained with
the optimization goal shown in Eq. (10). When the training
process finishes, the ω and b of hyperplane can be determined.
After that, in the testing stage, when given a sample xt, we
can use Eq. (11) to infer the class ŷ of xt. If f(xt) ≥ 0,
ŷ = 1. Otherwise, ŷ = −1.

f(x) = ωTx + b = 0 (9)

min 0.5 · ||ω||2

s.t., yi(ω
Txi + b) ≥ 1,∀i (10)

f(xt) = sign(ωTxt + b) (11)

Traditionally, SVM is a binary classifier. When used for
multi-class classification, pairwise classifications with SVM
were often used [26], e.g., training binary SVM classifiers
for paired events and using a voting mechanism to form
a multi-classifier [45]. It was also possible to use multiple

(a) Decision tree

. . .

Tree 1 Tree 2 Tree n

Class A Class B Class A

Voting

Final class

Instance

(b) Random forest

Fig. 13. Decision tree and random forest classifiers.

SVM classifiers to recognize activities step by step [126] or
recognize activities in different clusters separately [131]. Until
now, SVM classifiers have been adopted in a lot of HAR
research work, to recognize exercise activities [102], hand-
to-hand gestures [56], fine-motor finger gestures [127], cross-
device interactions [115], non-invoice acoustic input [122], and
so on. When used for detecting unseen new activities [95]
or user authentication [54][62][70], one-class SVM classifier
was often used. Take user authentication as an example,
the one-class SVM classifier [54][62] only had training data
from the legitimate user, while needing to differentiate the
legitimate user and attackers. However, if the legitimate user
and attackers were treated as two classes [124], i.e., positive
class and negative class, the two-class classifier [92] can be
used for user authentication with the training data from both
positive and negative classes.

Decision tree and random forest: Decision tree (DT) [143]
builds a tree model consisting of nodes and edges, as shown in
Fig. 13(a). The choice of a child node is based on information
entropy, and each branch from the root to a leaf node is a
classification rule [2]. Suppose the N training samples for DT
are D = {(x1, y1), . . . , (xi, yi), . . . , (xN, yN )}, where xi is
a feature vector, yi ∈ [1, C] and it is the label of xi. In the
training stage, we use Eq. (12) and Eq. (13) to calculate the
information gain G(D, a) of the ath feature. Here, pk is the
proportion of samples in class k, Dv means the split subset
of training samples whose value is v on the ath feature.

E(D) = −
k=C∑
k=1

pk · log2(pk) (12)

G(D, a) = E(D)−
∑
v

|Dv|
|D|

E(Dv) (13)

After that, we select the feature with highest information
gain, and create a decision node of the tree. By recursively
creating the nodes until the samples in a node belong to
the same class, we get the decision tree through training.
In the testing stage, the test sample xt starts from the root
node, follows the branch based on the decision on each node,
and reaches the leaf node. The class of the leaf node is
the classification result of xt. The decision tree has been
used for table-tennis stroke recognition [50], sleep quality
monitoring [107] and daily activity recognition [72]. In regard
to random forest [144], it consists of multiple decision trees
and often adopts a majority voting mechanism for activity
classification, as shown in Fig. 13(b). When comparing with
a single-tree classifier, random forest usually can improve the
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Fig. 14. KNN classifier.

classification performance [26]. The random forest classifier
was welcome in much research work, especially for fine-
grained activity and multi-level activity recognition, e.g., in-
air hand gesture recognition [119], finger touch identification
[79], tongue-jaw movement recognition [61], personal cough
detection [89], sleep apnea detection [93], and daily activity
recognition [97][103][98].

KNN: The KNN classifier infers the class of a sample by
measuring the similarities between the sample and its K near-
est neighbors. Suppose the N training samples for KNN are
D = {(x1, y1), . . . , (xi, yi), . . . , (xN, yN )}, where xi is a fea-
ture vector with m features xi = (xi1 , . . . , xij , . . . , xxm), j ∈
[1,m], and yi is the label of xi. For the test sample xt, it
calculates the distance, e.g., the Euclidean distance shown in
Eq. (14), between each training sample. Then, the test sample
selects K nearest neighbors with K smallest distances. After
that, the class occurring most frequently in the K nearest
neighbors is selected as the classification result of test sample
xt.

di =
√

(xij − xtj )2 (14)

As shown in Fig. 14, the test sample (black node) infers its
class as ‘Class 3’ based on the five nearest neighbors, where
‘Class 3’ occurs most frequently. KNN classifier was adopted
to recognize daily activities [40] and finger gestures [127], and
can be used for daily life monitoring [108], user authentication
[57] and human-computer interactions [145].

HMM: The HMM [146] assumes that the observed sequence
is governed by a hidden state sequence. As shown in Fig.
15, ‘Oi’ represents the observed sensor data (or feature), ‘Si’
represents the hidden state in an activity, and a HMM model is
used to calculate the probability that the hidden states generate
the observations. The unknown output probability poi and state
transition probability pi,i+1 can be obtained when training a
HMM classifier. For activity classification, we need to train a
HMM classifier for each activity class [52]. Then, when given
the observed data, the activity will be classified into that class,
whose HMM classifier achieves the highest probability of
generating the observed data. The HMM classifiers have been
used for recognizing tooth brushing activities [52], gestures in
table tennis early [49], and so on.

O0 O1 Oi+1 On

0op

Oi

oip

, 1i ip +
… …S0 S1 Si+1

Sn

0 1p ，
Si

Fig. 15. HMM classifier.
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Fig. 16. Convolutional neural network and the input.

Neural network: Neural networks are loosely modeled on
human brain, propagating activation signals and encoding
knowledge in the network links [2]. Different from previous
classifiers, neural networks can automatically extract features
for classification, without the need of inputting feature vectors.
Recently, the deep neural networks [38][35] have contributed
to a lot of HAR research work. As one of the most pop-
ular neural network, Convolutional Neural Network (CNN)
[151] mainly captures the spatial information from input
data. As shown in Fig. 16, the CNN utilizes convolutions
and subsampling to extract features, which are flatten to a
feature vector and input to a classifier (e.g., softmax) for
activity classification. Suppose the N training samples for
CNN are D = {(x1, y1), . . . , (xi, yi), . . . , (xN, yN )}, where
xi ∈ Rh·w·c, and yi is the label of xi. If the input data belongs
to time-series data, then h means the number of dimensions
(e.g., 6-axis inertial sensor has 6 dimensions), w means the
length of activity segment (i.e., number of data points), c = 1.
If the input data belongs to an image, then h, w and c mean
the height, weight and channels of xi. Usually, the sample xi

is sent to convolutional layers to get feature maps, as shown
in Eq. (15), where A(l) means the feature map after the lth
convolutional layer and A(0) = xi, W (l) is a convolution
kernel, b(l) is the bias, ∗ is the convolutional operation, f(·) is
the activation function. Besides, the pooling layers are adopted
to reduce the size of feature map, as shown in Eq. (16),
where pool(·) can be max or average pooling. After that, the
feature map is sent to the fully-connected layer to get the
feature vector Z(l), as shown in Eq. (17). Finally, the feature
vector Z(l) is applied with the activation function to get the
predicted probability vector A(L) = f(Z(l)), as shown in Eq.
(18). In the training stage, the prediction vector is compared
with true labels with loss functions L = loss(A(L), yi), and
the backpropagation will be adopted to update the model
parameters. In the testing stage, the prediction vector will be
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TABLE IX
RESEARCH WORK USING TRADITIONAL CLASSIFIERS

Year Work Activities Classes Subjects Sensors Device Location Features Classifier Dataset Accuracy Imp App

2013 [130] Finger gestures 10 50 A, T SP Hand TFs SVDE SC EER: 0.5% On S&A
2013 [95] Exercises 10 20 A, G SP, SW Arm, wrist, hip TFs SVM SC 79% Off EA
2015 [147] Hand gestures 1 200 A SP Hand TFs SVM SC FPR: 15%; FNR: 8% On S&A
2016 [126] Finger gestures 2, 4, 8 12 A, G SW Wrist TFs SVM SC 88.7%-99.4% Off HCI
2016 [62] Eye movements 4 20 C SP Hand 27 TFs SVM SC 88% On S&A
2016 [131] Hand gestures Variable 9 A, MC SP Near the hand FFs SVM SC 50%-60% Off S&A
2016 [122] Lip motions 10 8 MC SW Wrist 78 FFs SVM SC 90.50% On HCI
2017 [102] Exercises 12 12 A, G, QV SW Wrist 27 TFs SVM SC 93% Off EA
2017 [45] Driving activities 4 8 MC SP Near the body 2 PFs SVM SC 94.80% On DLM
2017 [148] Finger gestures Variable 86 T SP Hand TFs SVDE SC EER: 0.5%-0.52% Off S&A
2017 [149] Shaking Variable 20 A, G, CM SP Hand TFs SVM SC EER: 1.2% On S&A
2018 [92] Heart beating 1 20 A SP Chest 56 DFs SVM SC 96.49% On S&A
2018 [53] Driving 4 8 MC SP Near the body FFs SVM SC 94.80% On DLM

2018 [59] Lip motions Variable 48 MC SP Near the mouth AFs SVM,
SVDD SC 90.21%, 93.1% On S&A

2020 [56] Hand gestures 14, 5, 5 9, 10, 10 A, G, M, MC SW Wrist TFs, FFs SVM SC 94.6%, 98.4%, 96.3% Off HCI
2020 [150] Eye movements Variable 26 C SP Hand SFs SVC SC 77.89%-84.38% Off S&A

2021 [70] Finger gestures 4 77 A, G, RV, T SP Hand 80 TFs,
FFs, AFs SVM SC Above 95% Off S&A

2011 [89] Cough 9 17 MC SP Chest FFs RF SC TPR: 92%, FPR: 0.5% Off DLM
2015 [97] Daily activities 11 7, 1 A SW Wrist TFs RF SC F1: 76.1%, 71.3% Off DLM
2017 [79] Finger gestures 3 29 T SP Wrist SFs RF SC 93%-98% On HCI
2018 [119] Hand gestures 6 8 MC SP, SW Hand, wrist 19 FFs RF SC 68.9%-87.1% Off HCI

2018 [49] Table tennis strokes 6 10, 15 A, G, M SW Wrist TFs,
HMM states RF SC 92%-95% Off EA

2018 [103] Daily activities 9 16 DC SP Chest TFs, SFs RF SC 60.6%-94.6% Off DLM

2021 [61] Tongue movements 6 12 MC SP On the ear 12 TFs RF SC Precision: 95%,
Recall: 94.84% Off HCI

2021 [93] Apnea 1 20 A SW Wrist TFs RF SC F1: 96.49% Off DLM

2013 [107] Daily activities 3 7 MC SP Near the body 3 TFs DT SC Above 90% On DLM
2014 [72] Head gestures 5 8 A, P SG Head 4 TFs DT SC 82% Off DLM
2016 [50] Table tennis strokes 3 9 A, G SP Wrist TFs DT SC 77.21%, 69.63% On EA

2019 [57] Finger gestures 12 128 A, G SW Wrist FFs KNN SC 96% On S&A
2021 [145] Finger gestures 12 128 A, G SW Wrist FFs KNN SC 96% On HCI

2015 [52] Tooth brushing 7 14 MC SP Near the body 39 FFs HMM SC Above 45.1% Off DLM

A: Accelerometer, G: Gyroscope, M: Magnetometer, C: Camera, P: Proximity sensor, T: Touch sensor, MC: Microphone, DC: Depth camera, QV: Quaternion vector, CM:
Compass, RV: Rotation Vector; SP: Smartphone, SW: Smartwatch, SG: Smart glasses;
TF: Time-domain feature, FF: Frequency-domain feature; SF: Space-domain feature, AF: Automated feature, PF: PCA-based feature, DF: DWT-based feature; SVDE: Support
Vector Distribution Estimation, SVDD: Support Vector Domain Description, SVC: Support Vector Classification
SC: Self-collected, Imp: Implementation, On: Online, Off: Offline, App: Application; EA: Exercise assessment, DLM: Daily life monitoring, HCI: Human-computer interaction,
S&A: Security and authentication

used to infer the class ŷ with highest probability in A(L).

A(l) = f(W (l) ∗A(l−1) + b(l)) (15)

P (l) = pool(A(l)) (16)

Z(l) = W (l) · P (l) + b(l) (17)

A(L) = f(Z(l)) (18)

The CNN [110] has been adopted in much research work,
to recognize daily activities [41][152][153], swimming styles
[101], sign languages [110], sound-emitting gestures [134]
or handwriting [81][55][64]. In addition to the typical CNN,
the variants of CNN like ResNet, VGG or self-designed
network based on CNN were also adopted for HAR. For
example, ResNet18 [154] was used to recognize hand and
finger gestures for human-computer interactions, VGG [98]
and self-designed networks [155] were adopted to recognize

daily activities. Here, ResNet is a specific type of CNN by
introducing residual connections to address the degradation
problem, VGG utilizes multiple stacked convolutional layers
with small receptive fields to get a deeper network, while self-
designed network is proposed for the specific recognition task.

In addition to CNN, Recurrent Neural Network (RNN) [156]
was also popular in HAR and it mainly captures the sequence
information from input data. Thus RNN was usually adopted
to process time-series data. As shown in Fig. 17, it consists of
RNN cells over time. In RNN, the input is split into T steps,
where T means the length of activity segment. At the tth step,
the input is xt = (xt1 , xt2 , . . . , xtj , . . . , xtm−1

, xtm)T , where
xtj means the sensor data in the jth dimension and m means
the number of dimensions. Take the 6-axis inertial sensor data
as an example, xt = (ax(t), ay(t), az(t), gx(t), gy(t), gz(t))

T ,
where ax(t), ay(t), az(t), gx(t), gy(t), gz(t) means the accel-
eration and angular velocity along x-axis, y-axis, z-axis at the
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Fig. 17. Recurrent neural network and the input.

tth time, respectively. For the tth RNN cell, it receives both
the input vector xt at the tth step and the output vector from
the previous cell st−1, and then outputs the hidden state ht,
as shown in Eq. (19), where U and W are trainable weight
matrices, b is the bias vector, σ is an activation function,
ht−1 = st−1. When t = T , we can get the predicted result ŷt
at the tth/last step, as shown in Eq. (20), where V is a weight
matrix, c is a bias vector, and softmax is a classifier. In the
training stage, we will calculate the loss L(ŷt, yt) between
predicted ŷt and true label yt, and adopt backpropagation to
update the model parameters, where L(·) can be the cross-
entropy loss function. In the testing stage, we infer the class
of test sample as the class with highest value in predicted
vector ŷt.

hi = σ(Uxi +Whi−1 + b) (19)

ŷt = softmax(V ht + c) (20)

The RNN has been used for tracking 3D arm skeletons and
recognizing arm gestures [44], inferring passwords on the
smartwatch [74], extracting subtle finger motion signatures
as behavioral biometrics for user authentication [128], and
so on. However, as the number of cells increases, the final
RNN cell may lose the information of initial cells, thus Long
Short-Term Memory (LSTM) based model [47][109] or the
variant of LSTM (e.g., Inception-LSTM [63]) was proposed
to mitigate the problem. As shown in Fig. 18, a LSTM unit
introduces the input gate, output gate, forget gate, cell state to
deal with the vanishing gradient problem in RNN and track
long-term dependencies for activity recognition. Nevertheless,
considering the complexity of LSTM, Gated Recurrent Unit
(GRU) [66] which has fewer gates (reset and update gates)
than LSTM was proposed.

Different from CNN and RNN, Transformer was recently
introduced for HAR. Transformer introduces a self-attention

×

× +

×
tanh

tanhσ σ σ

xt-1

ht-1

×

× +

×
tanh

tanhσ σ σ

xt

ht

×

× +

×
tanh

tanhσ σ σ

xt+1

ht+1

. . .

Fig. 18. Long Short-Term Memory Network.
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mechanism to capture global dependencies in the input se-
quence, and it is possible to get more efficient sequence
information from time-series data. As shown in Fig. 19, in
Transformer, the positional encoding incorporates positional
information into input sequence, the self-attention calculates
attention weights and assigns importance to input sequence in
different positions, the multi-head attention adopts multiple
parallel self-attention heads to capture multiple representa-
tions, while the feed-forward network transforms the self-
attention outputs. Among them, self-attention is the essential
component of Transformer, and it can be described with Eq.
(21), where X is the input sequence, Wq , Wk, Wv are weight
matrices, dk is the dimension.

Q = XWq,K = XWk, V = XWv

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (21)

In Transformer, the input X = (x1, . . .xt, . . .xT) is
split into T parts, where T means the length of ac-
tivity segment. At the tth part, the input is xt =
(xt1 , xt2 , . . . , xtj , . . . , xtm−1 , xtm)T , where xtj means the
sensor data in the jth dimension and m means the number of
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TABLE X
RESEARCH WORK USING NEURAL NETWORKS

Year Work Activities Classes Subjects Sensors Device Location Features Classifier Dataset Accuracy Imp App

2015 [152] DAs 6 30 A, G SP Waist AFs CNN HAR 94.79% Off DLM
2016 [153] DAs 6, 5 30, 3 A, G SP Pocket, hand AFs CNN SC, MobiAct Above 93% Off DLM
2018 [81] HW V 10 MC SW Nearby hand AFs CNN SC 79.80% Off HCI
2019 [41] DAs 9, 6 10, 9 A, G SP, SW Hand, wrist,

pocket, waist
AFs CNN SC, HHAR Above 65% Off DLM

2019 [134] HGs 9 16 A, G, MC SW Wrist AFs CNN SC 97.20% On HCI
2019 [101] SW 4 40 A, G, M, B,

L
SW Wrist AFs CNN SC F1: 97.4% Off EA

2020 [55] HW 26 5 M SP Nearby hand AFs CNN SC Above 80% Off S&A
2021 [110] SL 50 20 DC SP Nearby body AFs CNN SC 91% Off HCI
2022 [157] DAs 17, 6 30, 30 A; A, G SP Pocket, waist AFs CNN SHAR, HAR Above 60% Off DLM
2022 [158] HGs, FGs 16 20 A, G SW Wrist AFs CNN SC 55.3%-87.2% On HCI
2022 [159] SM 1 19 MC SP Nearby body AFs CNN SC 93.44% On DLM
2022 [160] HGs, FGs 12 10 MC SP Nearby hand AFs CNN SC 99% Off HCI
2023 [34] TR 7 10 A, MC SP V AFs CNN SC 97.44% On DLM
2021 [139] Sleep 3 31 A, HR SW Wrist TFs, AFs ResDeepCNN AWSS 78.20% Off DLM
2022 [98] DAs 26 20 A, G, O, MC SW Wrist AFs CNN, VGG SC 92.20% Off DLM
2022 [154] HGs, FGs 6 10 MC SP Nearby hand TFs, AFs ResNet18 SC 96% Off HCI
2022 [155] DAs 8 15 A, G, M,

GPS, P, MC
SP, SW On the body AFs AIP-Net RealWorld Added by 20% Off DLM

2018 [128] FGs 6 155 A, G SW Wrist AFs RNN SC Above 90% On S&A
2018 [74] FGs V 362 A, G SW Wrist AFs RNN SC 28%-68% Off S&A
2019 [44] EXs, DAs 10, 7 7 A, G SW, SG Wrist, head AFs RNN SC 92.7%, 91.4% On EA,

DLM
2019 [109] SL 26, 104 5, 16 A, G SW Wrist TFs, FFs, AFs LSTM SC Above 99% Off HCI
2020 [63] HW 26 24 MC SP Nearby hand TFs, AFs LSTM SC 64.96%-94.86% Off HCI
2021 [66] FGs 10, 26 15 A, G SW Wrist AFs GRU SC 90%, 91% On HCI

2022 [161] DAs 6 29 A SP Pocket AFs Transformer WISDM 98.89% Off DLM
2022 [162] DAs 6, 8 3-30 A, G, etc SP, SW V AFs Transformer HAR, SHL,

MotionSense,
RealWorld, HHAR

92.6%-98.72% Off DLM

2018 [35] DAs 12 30 A, G SP Waist TFs, FFs, PFs,
AFs

DBN HAPT 95.85% Off DLM

2020 [71] LMs 45 5 MC SP Hand AFs DNN SC WER: 8.33% Off HCI
2020 [137] DAs 8 15 A, G, M, L SP, SW V AFs DNN RealWorld 86.11% Off DLM
2022 [138] DAs 8 13 A, G, M,

GPS, L, MC
SP, SW V AFs DNN RealWorld Above 75% Off DLM

2022 [163] DAs, FD V V A SP V AFs SAN SHO, SHL, SC Above 83% Off DLM
2023 [164] DAs 6, 17 30, 30 A, G; A SP Waist AFs BNN HAR, SHAR 98.2%, 93.6% Off DLM
2023 [165] HW V 10 A SP Near the hand AFs TSNN SC 75.3%, 86.4%,

79%
Off HCI

2023 [166] LO 6, 8, 5 10, 3, 13 A, G, M;
MS; A, G,
M, O

SP V AFs DNN SC, SHL, TMD 59.41%-94.21% Off DLM

2021 [60] LMs 20, 70 12 MC SP Nearby mouth AFs CNN, E-D SC Acc: 91.2%;
WER: 7.1%

Off HCI

2021 [64] HW 250 12 A, G, GR SW Wrist AFs CNN, E-D SC CER: 9.3%,
3.8%

Off HCI

2022 [116] IWs V 11 A SW Wrist AFs LOS-Net, E-D SC Above 50% Off Other
2022 [43] Gait 6 1405 A, G SP Pocket TFs, AFs RiskNet SC 80.10% Off DLM
2023 [167] FGs 26 7 MC SP Hand FFs, AFs CNN, E-D SC 83.8%-92.2% Off S&A

2019 [67] FGs V 20 A, G, MC SW Nearby hand AFs CNN, RNN SC 27%-41.8% Off S&A
2020 [76] HGs 15 8 MC SP Nearby hand AFs CNN, LSTM SC 98.40% Off HCI
2021 [168] DAs 5 121 A, G, M SP V AFs DNN, CNN SC Above 80% Off DLM
2021 [169] DAs 11, 6 61, 30 A, G SP Pocket AFs CNN,

Transformer
MobiAct, HAR F1: 81.13%,

91.14%
Off DLM

2022 [170] DAs 7 5 A, G, GR,
LA

SP, SW,
SG

Pocket, wrist,
head

AFs DNN,
Transformer

CogAge 73.36% Off DLM

2022 [171] DAs 8 19 A, HR SW Wrist AFs CNN,
Transformer

harAGE Recall: 75.9% Off DLM

2022 [172] DAs 6-12 1-61 A, G, etc SP Waist, pocket AFs CNN,
Transformer

HAPT, SHL2018,
MotionSense,
HHAR, MobiAct

F1: 78.55%-
95.66%

Off DLM

DA: Daily activity; HW: Handwriting, HG: Hand gestures, FG: Finger gestures, SW: Swimming, SL: Sign language, SM: Smoking, TR: Transportation, EX: Exercises, LM:
Lip motions, LO: Locomotion, IW: Industrial work, FD: Food deliver;
V: Variable; A: Accelerometer, G: Gyroscope, M: Magnetometer, O: Orientation sensor, P: Proximity sensor, L: Light sensor, B: Barometer, GR: Gravity sensor, MC: Microphone,
DC: Depth camera, HR: Heart rate sensor, LA: Linear accelerometer, MS: Multi-modal sensors; SP: Smartphone, SW: Smartwatch, SG: Smart glasses;
TF: Time-domain feature, FF: Frequency-domain feature; AF: Automated feature, PF: PCA-based feature, AIP-Net: ResNet+Attention, DBN: Deep Belief Network, SAN:
Siamese key activity attention network, BNN: Binarized Neural Network, TSNN: teach-student neural network, E-D: encoder-decoder network,
AWSS: Apple Watch Sleep Study, SC: Self-collected, Imp: Implementation, On: Online, Off: Offline, App: Application; EA: Exercise assessment, DLM: Daily life monitoring,
HCI: Human-computer interaction, S&A: Security and authentication

dimensions. Specifically, as shown in Fig. 19(a), when given
the input vectors xt, t ∈ [1, T ], Transformer which contains
the self-attention mechanism takes into account every vector of

the entire input to generate the embedding et for each vector
xt. With the embeddings et, t ∈ [1, T ], a fully-connected layer
and a softmax function are adopted for activity classification. It
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Fig. 20. Semi-supervised learning based HAR.

worth noting that Transformer is often used with an encoder-
decoder architecture to generate output sequence. However,
in HAR work, Transformer can be used as an encoder and
connected with some classifier for classification, as described
above. Recently, Raza et al. [161] proposed a lightweight
transformer for daily activity recognition. EK et al. [162]
presented Human Activity Recognition Transformer (HART)
specifically adapted to the domain of inertial sensors for daily
activity recognition.

When considering the specificity of a recognition task, other
networks were also proposed. For example, a deep learning
network EchoNet modified by the popular MobileNet V2
was proposed for lip reading [71], a deep neural network
with attention mechanisms was proposed to fuse multi-sensor
data for daily activity recognition [137], a hierarchical CNN
and a multi-task encoder-decoder network were proposed for
word-level and sentence-level lip reading [60], a Lightweight
Ordered-work Segmentation Network (LOS-Net) was pro-
posed for recognition of ordered works [116], a siamese
key activity attention network (SAN) was proposed to detect
the exact regions of key activities [163]. Besides, instead
of only using one neural network, the combination of CNN
and RNN was proposed to snoopy keystrokes occurring on a
physical keyboard [67], the combination of CNN and LSTM
was adopted for gesture recognition [76], the combination of
CNN and other encoder-decoder modules was proposed for lip
reading [60], handwritten character recognition [64], industrial
work recognition [116], gait recognition [43] and keystroke
inference [167], the combination of CNN and Transformer was
adopted for daily activity recognition [170][171][172]. More-
over, after building neural works, carefully designing a suitable
loss [157] and enlarging training dataset by augmentation [76]
can also be adopted to further improve the HAR performance
of neural works.

Others: In addition to the above classifiers, other classifiers
like logistic regression (LR) [65], naive Bayes (NB) [127],
multilayer perceptron (MLP) [115][141] were also used in
HAR. In the specific recognition tasks, some customized clas-
sifiers were proposed, e.g., a density-based one-class classifier
was used for secure text input [57], a two-level classification
approach based on the conditional random field was used for
drinking activity recognition [106]. Besides, instead of using
one classifier, some research work adopted several classifiers
[59][99][80] for activity recognition. For example, combining
a convolutional neural network and a SVM classifier [83],
using a random forest classifier and a CNN for online and

Unlabeled data Machine learning model Clusters

Fig. 21. Unsupervised learning based HAR.

offline recognition respectively [48], testing the performance
with different classifiers [40][115], studying both baseline
machine learning models and deep learning models for daily
activity recognition [133]. In addition to these combinations,
other combinations were proposed for the specific recognition
tasks, e.g., multi-level classifiers for sound-related respiratory
symptom detection [87], three-stage hierarchical classifiers for
transportation mode detection [39].

2) Semi-supervised learning: In supervised learning, each
training data has its label (i.e., the type of activity). However,
due to the large cost of data annotation, labeling all the data
is rather difficult. Therefore, semi-supervised learning was
adopted to combine a small amount of labeled data and a
large amount of unlabeled data for HAR [176][177]. As shown
in Fig. 20, semi-supervised learning based HAR usually first
uses the labeled data to train a machine learning model, then
utilizes the trained model to generate the pseudo labels for
unlabeled data. After that, adopting both the labeled data
and pseudo-labeled data to train a new machine learning
model, which will be used to recognize the class of test
data. In semi-supervised learning, autoencoder [178][179] and
convolutional neural networks [180][179] were often adopted
to learn the feature representation. For example, Balabka et
al. [178] proposed a deep semi-supervised learning method
using adversarial autoencoder and employing convolutional
networks for feature extraction, and combined unlabeled data
and a small amount of labeled data for training, to recognize
locomotion and transportation activities. In addition, to fully
utilize unlabeled data, self-supervised training [181][182][183]
which extracts features from unlabeled data was also adopted.
For example, adopting self-supervised training to extract fea-
tures from unlabeled data, while using supervised training with
labeled data to train the classifier, to recognize daily activities
[181].

Because semi-supervised learning methods can appropri-
ately utilize unlabeled data for HAR, they were often adopted
for cross-domain activity recognition, where the labels of train-
ing data in new domains are unavailable. For example, using
unsupervised domain adaptation (UDA) algorithms based on
feature matching and confusion maximization, to recognize
activities which are collected with sensors worn in different
ways [36]; using an unsupervised online domain adaptation
algorithm by normalizing the input, to recognize activities
from new user [184]; proposing an Adaptive Spatial-Temporal
Transfer Learning (ASTTL) approach by selecting similar
source domains and transferring knowledge, to recognize
activities in a different dataset [185].

3) Unsupervised learning: In unsupervised learning, there
is only unlabeled data while no labeled data. Therefore,
clustering [186][187] was often adopted to group the data
with shared attributes (e.g., activities in the same class), where
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TABLE XI
RESEARCH WORK USING OTHER CLASSIFIERS OR THE COMBINATION OF MULTIPLE CLASSIFIERS

Year Work Activities Classes Subjects Sensors Device Location Features Classifier Dataset Accuracy Imp App

2017 [94] BR 3 3 MC SP Nearby mouth GFCCS GMM SC Above 94% Off S&A
2018 [106] DAs 8, 4 70 A, G SW Wrist 6 TFs, 7 TFs CRF SC Above 83% On DLM
2022 [65] HGs 1 112 A, G SP Hand TFs, FFs LR SC 92.57% Off S&A

2013 [39] TR 6 16 A SP Pocket, bag 78 TFs, FFs DT, AdaBoost SC Above 80% On DLM
2013 [113] DR V 12 A, G, CM,

C, GPS
SP Nearby body SFs, TFs AdaBoost, SVM, DT,

BB
SC R: 83%, R: 75% On DLM

2015 [87] RE 4 16 MC SP Desk, pocket,
backpack

TFs, FFs Coarse classifier, SVM SC Above 82% On DLM

2015 [40] DAs 6 30 A SP Waist TFs KNN, DT, JRip, NB HAR 95% Off DLM
2016 [127] FGs 5 10 A, G, GR SW Wrist 357 TFs, FFs SVM, NB, LR, KNN SC F1: 87% Off HCI
2017 [115] AGs, HGs 24 12 A SP, SW Hand, wrist 63 TFs, FFs SVM, DT, RF, MLP SC Above 80% On HCI
2018 [108] DAs V 15 A, G, MC,

L, O
SW Wrist TFs, FFs KNN, C4.5 DT, HMM SC Above 80% On DLM

2018 [173] EXs 15 22 A, G, GR SW Wrist TFs, FFs CRF, HMM, DT, RF,
SVM

SC Above 90% On EA

2018 [174] FGs V 12 LA SW Wrist 155 TFs, FFs SLR, RF, KNN, SVM,
BDT

SC 63%-94% Off S&A

2020 [86] FGs 30 41 A, G, T SP Hand TFs, SFs OCSVM, MT-KNN SC EER: 4.9% On S&A

2013 [105] DAs 8, 4 22 A, MC,
GPS

SP Chest, pocket,
wrist

TFs, FFs SVM, NN SC F1: 89.5%-
93.8%

Off DLM

2016 [38] DAs 11, 7 10, 10 A, G SW, SP Wrist AFs DNN, SVM SC,
Shoaib

98.90% Off DLM

2017 [80] HW 62 10 A, G SW Wrist 46 TFs, FFs DT, RF, SVM, MLP,
NB, NN, KNN

SC 99.90% On HCI

2017 [175] DR 6 20 A, O SP Nearby body TFs SVM, NN SC 95.36%,
96.88%

On DLM

2018 [83] EMs 3 70 C SP Head SFs, AFs SVM, CNN SC 81.4%-100% Off HCI
2019 [99] AGs, HGs 6 12 A, G, GR, P,

T, C, MC
SP Nearby mouth TFs, AFs SVM, DenseNet, C4.5

DT
SC Above 93% On HCI

2019 [48] AW 26 14 A, G, M SW Wrist SFs, AFs RF, CNN SC 91.6%, 94.3% Off,
On

HCI

2019 [47] TB 13, 15 10 A, G, M SW Wrist TFs, AFs KNN, SVM, DT, AT-
LSTM

SC Above 90% Off DLM

2022 [141] FGs V 161 T SP Hand TFs, SFs, AFs ResNet-50, BiLSTM,
KNN

TFST EER: below 2% Off S&A

2022 [133] DAs 23 15, 5 A, G, MC SW Wrist TFs, FFs, AFs RF, NB, AdaBoost, Dep-
pConvLSTM, CNN, At-
tend&Discriminate

SC F1: 89.7%-
94.3%; 30%-
55.8%

Off DLM

BR: Breathing, DA: Daily activity, TR: Transportation, DR: Driving, RE: Respiratory, AG: Arm gesture, HG: Hand gesture, FG: Finger gesture, EX: Exercise, HW: Handwriting,
EM: Eye movement, AW: Air writing, TB: Tooth brushing;
V: Variable; A: Accelerometer, G: Gyroscope, M: Magnetometer, C: Camera, O: Orientation sensor, P: Proximity sensor, L: Light sensor, T: Touch sensor, MC: Microphone,
CM: Compass, LA: Linear accelerometer, GR: Gravity; SP: Smartphone, SW: Smartwatch;
TF: Time-domain feature, FF: Frequency-domain feature; SF: Space-domain features, AF: Automated feature, GFCC: Gammatone Frequency Cepstral Coefficient;
CRF: Conditional random field, GMM: Gaussian Mixtures Model, BB: Binary Bayesian, SLR: Simple linear regression, BDT: Bagged decision trees, MT: Multi-threshold;
TFST: Touching with fingers straight and together, SC: Self-collected, Imp: Implementation, On: Online, Off: Offline, App: Application; EA: Exercise assessment, DLM: Daily
life monitoring, HCI: Human-computer interaction, S&A: Security and authentication

the actual class of each cluster is unknown, as shown in Fig.
21. To get the clusters, Lu et al. [188] utilized the density
for clustering, Bai et al. [189] proposed a deep learning
variational autoencoder model Motion2Vector, which learns
the representation of activities with unlabeled sensor data and
groups the activities based on Euclidean distance. To achieve
unsupervised HAR, Ma et al. [190] firstly applied a CNN-
BiLSTM autoencoder to form a compressed latent feature
representation, then applied a K-means clustering algorithm
to allocate pseudo labels for instances and trained a deep
neural network (DNN) with pseudo labels for activity recog-
nition. If we want to map the pseudo label into actual class,
more information is often needed. For example, by using
the temporal structure of period motifs and action motifs
as well as utilizing an existing process instruction document
for operation recognition, Xia et al. [191] proposed a robust
unsupervised factory activity recognition method.

B. Knowledge-driven approaches

Different from data driven approaches depending on training
data, knowledge driven approaches utilize domain knowledge,

i.e., analyzing the mechanism of human activities, to classify
activities without training. Usually, the knowledge driven
approaches utilize template/pattern matching, probability anal-
ysis and geometric properties for HAR, as described below.

Template/Pattern matching: The template/pattern match-
ing based recognition approaches compare the processed data
with templates or specific patterns for activity classification.
If the processed data has the highest similarity to the template
or pattern of an activity, it will be classified into that type of
activity. Sometimes, there may be more than one template of
an activity, then the voting mechanism [85] can be adopted.
In regard to the template, it can be composed of sensor data
[91], amplitude spectrum density features [68], meta-activities
[129], multipath effect features [85], etc. The patterns can be
moving patterns of gazes [78], a sinusoidal motion pattern
of sensor data [132], etc. To match with the templates or
patterns, the Dynamic Time Warping (DTW) [91] was used to
measure the similarity between two temporal data segments
which can vary in speed and length, while the contour-
based template matching [100] method was proposed to find
the target region in an image. In regard to the similarity,
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Fig. 22. Geometric property based recognition approach.

it can be represented with Euclidean distance [68][88], edit
distance [129], etc. Usually, the smaller distance means higher
similarity. The template/pattern matching based approaches
have been used in exercise activity recognition [129][132],
hand/foot gesture recognition [100], typing activity recognition
[68], gaze gesture recognition [78], vital sign sensing [91][88],
and user authentication [85].

Probability analysis: The probability analysis based recog-
nition approaches calculate the probability of classifying the
processed data into an activity class, and then select the
activity class with the highest probability. The probability is
usually calculated based on the constraints (e.g., the stroke
composition in a letter [69], the character composition in a
word [75]) in activities. For example, estimating the poste-
rior probability to infer the typed letters based on observed
unistroke gestures [69], using a Bayesian inference model to
infer words from possible typed letters based on the language
model [75], combining the pronunciation rules and context-
based error correction to recognize lip-reading sentences with
the maximum probability [82].

Geometric property: The geometric property based recog-
nition approaches utilize the specific geometric property, e.g.,
the topological structure, the transmission path, to recognize
activities. For example, considering the fixed structure of a
steering wheel, when the hands griped the steering wheel, the
hand movement was mapped with the steering wheel rotation
to track steering wheel usage and turning angles [51]. In regard
to the changes of signal’s transmission path, they can be used
to infer human activities causing the changes, as the reflection
path changes caused by taps in Fig. 22, where the structure-
borne sounds and air-borne sounds in propagation paths were
proposed to recognize finger taps and movements on the back
of mobile devices [121].

Others: In addition to the previous approaches, other
knowledge-driven approaches utilizing the specific character-
istics of recognition tasks were also proposed. These kinds
of approaches were often tightly coupled with the problem.
For example, detecting the variation of sensor data, e.g., the
peaks [33][90], sudden spikes [90], waveform changes [46],
local extreme value [73], to recognize transportation modes
[33], sleep apnea [90], vehicle steering [46], eye blink [73],
etc. When processing images, the finger’s movement was
mapped with the fingertip’s coordinate and a key’s occluded
area for typing activity recognition [77]. In addition, instead
of using one knowledge driven approach, it was also possible

to combine multiple knowledge driven approaches in differ-
ent steps for activity recognition. For example, using time-
difference of arrival measurements to cluster keystrokes, and
then calculating the correlation between acoustic features to
separate keystrokes in a cluster for typing activity recognition
[123]. When splitting the recognition task into subtasks, each
subtask can adopt an approach [117], e.g., calculating the
correlation between written stroke and ideal stroke for stroke
recognition, introducing a grammar tree to recognize strokes
as characters, using edit distance to correct the recognized
words, etc. When combining multi-modal sensor data, differ-
ent recognition approaches were also used [135], e.g., using
image processing to track fingers in 2D space, while using
phase changes of ultrasound to track the depth of fingers in
3D space, to provide a depth-aware tapping scheme.

C. Hybrid approaches

Instead of only using data-driven approaches or knowledge-
driven approaches, the combinations of these two kinds of
approaches were also used in HAR research work. Usually,
these research works often had multiple recognition tasks, e.g.,
monitoring respiratory rate and recognizing body positions
[118], where different recognition tasks adopted different
recognition approaches. For example, using the standard de-
viation in 6-axis inertial sensor data to distinguish gazing and
walking while using a TextonBoost classifier to detect reaching
out activity [111], using a neural network to learn the finger’s
position while using the generalized likelihood ratio test to
detect a tapping event [58], using Dynamic Time Warping
(DTW), direction changes of sensor data and a SVM classifier
to recognize body-level, arm-level and wrist-level activities
respectively [112], using a robust authentication model based
on CNN-LSTM for user identification while adopting one-
class SVM for spoofer detection [120]. In addition to these
different activities, the same activities in different scenarios
were also recognized with different approaches. For example,
a Euclidean distance-based model and a training-free inference
algorithm were proposed to infer the PINs/patterns in mobile
payment when the smartwatch and the smartphone were worn
on different hands, while a Support Vector Machine (SVM)
classifier was proposed to infer the PIN entries when the
smartwatch and the smartphone were worn on a single hand
[84]. For the gait patterns sensed with the same sensor data, the
weighted Pearson correlation coefficient was proposed for user
verification in the user-centric way, while a Support Vector
Machine classifier was proposed for user verification in the
server-centric way [42].

D. Learned lessons about recognition approaches

Uniqueness of adopting machine learning in HAR: (1)
Input data: The sensor data in mobile device-based HAR
is diversified, including inertial sensor data, acoustic signals,
images, and so on. When considering the different modalities
of sensor data, it is needed to carefully design different input
formats for different sensor data or transform the sensor data
to get a uniform input format, as described in Section VI-A-1).
Besides, the sampling rate of sensor data can also be different,
and it is needed to resample and synchronize the input sensor
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TABLE XII
CHARACTERISTICS OF COMMON CLASSIFIERS

Classifier Input Feature Focus Training size Performance Scalability Overhead Imp FU

SVM Feature vector Handcrafted (or automated) Feature extraction Small Good Low Low Easy High

RF Feature vector Handcrafted (or automated) Feature extraction Small Good Low Low Easy Medium

KNN Feature vector Handcrafted (or automated) Feature extraction Small Good Low Low Easy Low

HMM Feature vector Handcrafted (or automated) Feature extraction Medium Good Low Medium Moderate Low

NN Sensor data Automated Model design Large Good or excellent High High Hard High

Imp: Implementation, FU: Frequency of usage

TABLE XIII
COMPARISON OF RECOGNITION APPROACHES

Data-driven approaches Knowledge-driven approaches

Pros

Activity analysis: They allow activity recognition without understanding the
complex mechanisms of human activities.
Performance: Given enough training data, the activity recognition performance
can be improved.

Processing: They get rid of the dependence of training data, and the computation
overhead is usually limited.
Implementation: It is easier to implement the approaches on the mobile device
in an online way.

Cons

Processing: A lot of manpower cost can be consumed in collecting and labeling
training data.
Performance: The activity recognition performance can be affected by the
selected features and the size of training data.
Implementation: Some deep learning based approaches are difficult to be
implemented in an online way.

Activity analysis: They require domain knowledge to provide a comprehensive
understanding of human activities. It can be very challenging, due to the the
complexity of human activities.
Performance: The performance is usually affected by the analysis of human
activities.

data. While in typical tasks using machine learning, they
often focus on fixed modalities (e.g., images, texts), and are
rarely affected by sampling rate. (2) Data preprocessing: When
considering the noises in sensor data, the uncertainty in the
starting and ending time of an activity, and the changeable
formats of the same data in different coordinates or domains,
it is usually necessary to preprocess sensor data in HAR,
before inputting the sensor data into model/classifier, aiming to
achieve a higher recognition performance with higher-quality
preprocessed data. While in typical tasks using machine learn-
ing (e.g., image classification), traditional methods tended
to adopt data preprocessing like denoising to get higher-
quality data for handcrafted feature extraction, the newly-
emerging deep learning based methods tended to adopt data
preprocessing like resizing images to get the appropriate input
format for network. (3) Model design: Collecting and labeling
sensor data of human activity needs a high labor cost, thus
a HAR model is expected to work with a small training
dataset. Besides, the sensor data of human activity contains
time information, thus a HAR model is expected to capture
the time feature from sensor data. In addition, the resource
of mobile device is limited, thus a HAR model is expected
to be small and have a chance to work on mobile device.
While in typical tasks using machine learning (e.g., image
classification), it may be convenient to collect a large number
of samples (e.g., downloading from the Internet). Besides, the
samples (e.g., images) often have no time information and the
model does not need to capture time features. In regard to
the complexity of model, it is rarely considered, since these
models are often performed on a server. (4) Computation
overhead: The computational resource and battery life of
mobile device are limited. Therefore, when designing a HAR
solution (especially a deep learning based solution), in addition
to the recognition performance, the computation overhead is
also considered. Besides, in the HAR applications requiring

real-time feedbacks (e.g., motion sensing games), the time
latency should also be considered. The large computation cost
or time latency may hinder the application of a HAR solution
based on mobile device. While in typical tasks using machine
learning, they mainly focus on the performance like accuracy
while paying little attention to computation overhead or time
latency.

Characteristics about common classifiers: In Table XII,
we provide the characteristics of common classifiers, i.e., the
traditional classifiers SVM, RF, KNN and HMM as well as the
recent neural networks, from different aspects. On the aspect of
input, the traditional classifiers usually adopted feature vectors
as input, while neural networks usually adopted preprocessed
sensor data as input. On the aspect of features, the traditional
classifiers usually adopted handcrafted features, while the
neural network usually automatically extracted features by
themselves. Sometimes, the traditional classifiers may also
adopt the automated features extracted by other neural net-
works. On the aspect of key focus, the traditional classifiers like
SVM, RF, KNN and HMM often focused on getting efficient
features, while neural networks focused on designing efficient
models/networks. On the aspect of training size, the size of
training data adopted in SVM, RF, KNN is usually small, the
training size in HMM is moderate, while the training size in
neural network is usually large. The neural networks often
require enough samples for model training. Usually, whatever
for traditional classifiers or neural networks, the collected
sensor data was often sent to a server through Bluetooth,
WiFi or mobile data network for model training, since model
training with heavy computation was often performed on a
server instead of mobile devices. In regard to the trained
classifier/model, it can be deployed on the mobile device or
a server. When considering the model size and computational
overhead, the traditional classifiers like SVM, RF and KNN
can be deployed on mobile device for HAR, while the trained
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model of neural network was often deployed on a server.
Therefore, when adopting neural networks for HAR, the sensor
data was usually transmitted to a server for processing and
classification. On the aspect of recognition performance, both
the traditional classifiers and neural networks can achieve a
good performance in activity recognition, when given effi-
cient features or carefully-designed models. However, when
there were sufficient training samples, neural networks usually
achieved a higher performance. On the aspect of scalabil-
ity, the traditional classifiers have low scalability, since they
depended on extracted features, which could be different
from one dataset to another dataset. When applying the same
classifier to another scenario (or dataset), it needed to extract
new features again. Differently, neural networks have higher
scalability, because they can automatically extract features
from sensor data, thus can be more easily applied to another
activity recognition tasks (datasets). As shown in Table X, the
neural network based approaches often worked on different
datasets. On the aspect of computation overhead, the SVM,
RF, KNN often have a low overhead, HMM has a medium
overhead, while neural networks often bring a high computa-
tion overhead. On the aspect of implementation difficulty, the
traditional classifiers are easier to be implemented, especially
the SVM, RF and KNN were often adopted for lightweight
devices. In regard to neural networks, they often run on a
server and are hard to be implemented on mobile vices. If
a neural network was expected to work on mobile devices,
the model compression and optimization are often adopted to
simplify the network. On the aspect of frequency of usage, the
SVM and neural network were most frequently adopted, the
RF was also commonly used, while KNN and HMM were less
commonly used. These characteristics of common classifiers
are expected to be considered, when selecting or designing
classifiers for activity recognition.

Comparisons of data-driven and knowledge-driven ap-
proaches: In Table XIII, we analyze the pros and cons of
data driven approaches and knowledge driven approaches from
the aspects of activity analysis, data processing, recognition
performance and implementation way. From the aspect of
activity analysis, data driven approaches usually do not require
the mechanism analysis of activities, while knowledge driven
approaches need to analyze human activities for recognition.
From the aspect of data processing, data driven approaches
often require non-negligible labor cost in labeling training data
and enough resources for model training. To get the training
dataset and train the model, the collected sensor data from
mobile devices is often sent to a server through Bluetooth,
WiFi, or mobile data network. Differently, knowledge driven
approaches do not need training data and can process data
with limited overhead. From the aspect of performance, data
driven approaches, especially deep learning based methods,
can achieve a high performance. Differently, the performance
of knowledge driven approaches is usually affected by the
analysis of human activities. From the aspect of implemen-
tation way, data driven approaches, especially deep learning
based methods which adopt large models, often work in an
offline way, i.e., the sensor data is sent to a server through net-
work for processing. Differently, knowledge driven approaches
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Fig. 23. Researched recognition approaches.

are usually easy to be implemented and can work on mobile
devices in an online way.

Recognition approaches over time: In Fig. 23(a), we pro-
vide the statistics of recognition approaches, including data-
driven, knowledge-driven and hybrid approaches. It can be
found that a lot of research work preferred to adopt data-driven
approaches, especially supervised learning based approaches,
which often have the common workflow, as shown in Fig. 11.
In supervised learning, the neural networks which have a good
ability of feature extraction were most frequently used. The
SVM classifier which has a lower computation overhead was
also popular. Besides, the combination of multiple classifiers
was also commonly used for different recognition tasks and
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Fig. 24. Performance evaluation in HAR research work.

performance comparisons. Different from the most popular su-
pervised learning based methods, the semi-supervised learning
based and unsupervised learning based methods occurred spo-
radically and were rarely adopted. In regard to the knowledge-
driven approaches or hybrid approaches, they were less com-
monly adopted and usually designed for specific tasks. To
further analyze the research trends in recognition approaches,
we also provide the statistics of existing approaches in each
year. As shown in Fig. 23(b), the data-driven approaches
become more and more popular, especially after 2015. The
knowledge-driven approaches were mainly adopted from 2015
to 2017, while paid less attention from 2018. In regard to the
hybrid approaches, they were rarely adopted, from the past
to the present. When considering the popularity of supervised
learning based methods in data-driven approaches, we also
provide the statistics of supervised learning based approaches
in each year. As shown in Fig. 23(c), the traditional classifiers
were often adopted in previous years (i.e., before 2018), while
less used in recent years. Differently, from 2018, the neural
networks attracted more and more attention, and had been
widely adopted in these years. Nowadays, most of research
work had adopted neural networks for HAR. In regard to other
approaches using different or multiple classifiers, they were
adopted as needed, and received good attention during these
years. The above uniqueness, characteristics, comparisons and
research trends of recognition approaches can be used as
a guidance for designing solutions for mobile device-based
HAR.

Open problems: Firstly, to train a classifier for HAR, it is
often necessary to provide enough training samples, especially
for deep learning based methods. However, collecting and
labeling sensor data of human activity requires a high labor
cost. How to reduce the cost of data annotation is rather
meaningful for HAR, and it deserves further study. Secondly,
the existing HAR approaches can only recognize activities
in fixed classes, they can not recognize new-class activities.
However, in a real life scenario, there are a lot of classes of
activities, thus recognizing new-class activities is important
and meaningful. It is a challenging task and has not been
studied well. Thirdly, considering the difference of users,
environments and devices, a HAR solution is expected to work
under different scenarios. However, the existing approaches
were often evaluated with a limited number of scenarios. The
generalization of HAR approaches is expected to be paid more

attention. Fourthly, considering the limited resources of mobile
devices, many existing approaches (especially deep learning
based approaches) process data offline and can hardly work
on mobile device. To provide a timely feedback of HAR,
the mobile device and the server running HAR approach are
encouraged to keep connected for data transmission. Besides,
it is also expected to design lightweight models, which can
work on mobile devices for HAR.

VII. EVALUATION STANDARDS

To evaluate the performance of an activity recognition
approach, the data set, recognition performance, time latency,
energy consumption and implementation way will be consid-
ered, as shown in Fig. 24. Here, the time latency and the energy
consumption are two metrics used to measure the computation
overhead, since the resource of mobile devices is limited.

A. Available data sets

Until now, there have been some public HAR data sets,
whose sensor data is collected by mobile devices, as shown
in Table XIV. Among the data sets, most of them provide
the sensor data corresponding to daily activities, e.g., UCI
HAR [192], HHAR [193], ActiTracker [194], MotionSense
[195], etc. Other activities like falls [196], specific activities
[197], sign language [110] were proposed in some data sets.
Besides, most of the data sets adopt motion sensors (i.e.,
accelerometer, gyroscope, magnetometer or combination of
them) for data collection, e.g., WISDM [198], SBHAR [199],
HARBox [168], etc. Other sensors like proximity sensor [200],
microphone [63], depth camera [110] were used as needed.
In regard to the mobile device, smartphone [192][201][199],
smartwatch [133][98] or the combination of smartphone and
smartwatch [193][200][197] were often used. The details of
each data set can be found in Table XIV.

B. Recognition performance

To measure the recognition performance of HAR, the fol-
lowing metrics [2] including accuracy [44][131][81], precision
[123][106], recall [123][106] and F1-score [102][95] are often
adopted. For illustration, we use Cij to represent the number of
activity instances in class i classified into class j, i, j ∈ [1, n].
If i = j, the activity instance is correctly classified. Otherwise,
the activity instance is wrongly classified. For all activity

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2024.3357591

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on January 25,2024 at 06:59:44 UTC from IEEE Xplore.  Restrictions apply. 



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 00, NO. 00, JANUARY 2024 29

TABLE XIV
AVAILABLE DATA SETS

Dataset Year Activity Classes Subjects Instance Sensors Sampling rate Devices Locations Environments

WISDM [198] 2011 DAs 6 29 4526 A 20Hz SP Pocket Controlled
ActiTracker [194] 2011 DAs 6 29 – A 20Hz SP Pocket Out of Lab
Siirola 2012 [202] 2012 DAs 5 8 – A 40Hz SP Pocket Out of Lab
UCI HAR [192] 2013 DAs 6 30 10299 A, G 50Hz SP Waist Controlled
Shoaib 2013 [203] 2013 DAs 6 4 12755 A, G, M 50Hz 4 SPs Pocket, belt, arm,

wrist
Controlled

Shoaib 2014 [204] 2014 DAs 7 10 – A, G, M, LA 50Hz 5 SPs Left pocket, right
pocket, belt, upper
arm, wrist

Controlled

HHAR [193] 2015 DAs 6 9 43930257 A, G Highest 8 SPs, 4 SWs Waist, arm Out of Lab
HAPT [199] 2016 DAs 12 30 – A, G, M 50Hz SP Waist Controlled
MobiAct [205] 2016 DAs,

Falls
13 57 – A, G, O Highest SP Pocket Controlled

RealWorld [200] 2016 DAs 8 15 – A, G, M, GPS, P,
MC

50Hz 6 SPs, 1 SW Head, chest, upper
arm, waist, fore-
arm, thigh, shin

Controlled

SBHAR [199] 2016 DAs 12 30 10929 A, G 50Hz SP Waist Controlled
Shoaib 2016 [206] 2016 DAs 13 10 – A, G, LA 50Hz 2 SPs Pocket, wrist Controlled
UniMiB-SHAR
[196]

2017 DAs,
Falls

17 30 11771 A 50Hz SP Pocket Controlled

ExtraSensory [197] 2017 DAs,
SAs

116 60 308320 SP: A, G, MC,
PS; SW: A

25Hz-40Hz,
22kHz

SP, SW Free Out of Lab

Song 2017 [207] 2017 MGs – 161 – T 60Hz SP Hand Controlled
MotionSense [195] 2018 DAs 6 24 – A, G 50Hz SP Pocket Controlled
SHL [201] 2018 LO,

TR
8 3 – MS Highest 4 SPs Hand, chest,

pocket, backpack
Out of Lab

TMD [208] 2018 TR 5 13 3725 A, G, M, GR, L,
P, MC, PR, etc

20Hz SP Variable Controlled

Apple watch sleep
dataset [209] [210]

2019 Sleep 5 31 – A, HR 50Hz, below 1Hz SW Wrist Controlled

Yin 2020 [63] 2020 HW 26 24 3962 MC 44.1kHz, 48kHz SP Near the hand Controlled
HARBox [168] 2021 DAs 5 121 – A, G, M 50Hz SP Variable Out of Lab
harAGE [211] 2021 DAs 8 19 – A, HR 25Hz, 1Hz SW Wrist Controlled
CogAge [212] 2021 DAs 61 , 7 8, 6 9029, 890 A, G, M, LA,

GR; A, G; A
20Hz-200Hz SP, SW, SG Pocket, wrist, head Controlled

Park 2021 [110] 2021 SL 50 20 5000 DC 8Hz SP Near the body Controlled

Zhang 2021 [60] 2021 LPs 20, 70 12 Lab: 19200,
33600 Wild:
24000, 23800

MC 48kHz SP Near the mouth Controlled,
in-the-wild

Zhang 2021[64] 2021 HW 250 12 22500 A, G, GR 200Hz SW Wrist Controlled
OpenPack [116] 2022 IWs 10 16 20129 A 30Hz SW Wrist Out of Lab

Bhattacharya 2022
[133]

2022 DAs 23 20 — A, G, MC 50Hz, 22.05kHz SW Wrist Semi-naturalistic,
in-the-wild

Mollyn 2022 [98] 2022 DAs 26 20 — A, G, O, MC 50Hz, 16kHz SW Wrist Out of Lab

DA: Daily activity, SA: Specific activity, MG: Multi-touch gesture, LO: Locomotion, TR: Transportation, HW: Handwriting, SL: Sign language, LP: Lip motion, IW: Industrial
work;
A: Accelerometer, G: Gyroscope, M: Magnetometer, O: Orientation sensor, P: Proximity sensor, T: Touch sensor, L: Light, GR: Gravity sensor, LA: Linear accelerometer, MC:
Microphone, PR: Pressure, PS: Phone state, MS: Multi-modal sensors, DC: Depth camera, HR: heart rate sensor;
SP: Smartphone, SW: Smartwatch, SG: Smart glasses.

instances, we use the sum TP =
∑i=n
i=1 Cii to represent the

true positives, i.e., the number of activity instances that are
correctly classified. Then, we can calculate the recognition
accuracy of human activities with Eq. (22).

Accuracy =

∑i=n
i=1 Cii∑i=n

i=1

∑j=n
j=1 Cij

(22)

For each class, take class i as an example, we use TPi =
Cii to represent the true positives, i.e., the activity instances
belonging to class i are correctly classified into class i, while
using TNi =

∑k=n
k=1

∑j=n
j=1 Ckj , k 6= i, j 6= i to represent

the true negatives, i.e., the activity instances not belonging to
class i are classified into other classes. Besides, we use FPi =∑k=n
k=1 Cki, k 6= i, k ∈ [1, n] to represent the false positives,

i.e., the activity instances not belonging to class i are wrongly
classified into class i, while using FNi =

∑k=n
k=1 Cik, i 6= k to

represent false negatives, i.e., the activity instances belonging
to class i are wrongly classified into other classes. Then, we
can calculate the precision, recall, F1-score for class i, based

on Eq. (23), (24) and (25).

Precisioni =
TPi

TPi + FPi
(23)

Recalli =
TPi

TPi + FNi
(24)

F1− scorei = 2× Precisioni ×Recalli
Precisioni +Recalli

(25)

For all the classes, the average precision can be calculated
as Precision = 1

n

∑i=n
i=1 Precisioni, the average recall can

be calculated as Recall = 1
n

∑i=n
i=1 Recalli. In regard to

the average F1-score, we can calculate it as F1 − score =
1
n

∑i=n
i=1 F1− scorei or F1− score = 2× Precision×Recall

Precision+Recall .
Among the performance metrics, accuracy means the ratio of
activity instances correctly classified to all activity instances,
and it is often used to evaluate the overall classification perfor-
mance. The precisioni means the ratio of activity instances
belonging to class i and correctly classified to all the activity
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instances classified into class i. The recalli means the ratio of
activity instances belonging to class i and correctly classified
to all the activity instances belonging to class i. It is hard
to achieve both a high precision and a high recall at the
same time. Thus the F1-score combines precision and recall,
to provide a trade-off.

In addition to the above metrics, Equal Error Rate (EER)
is often adopted for binary-classfication tasks, especially for
user authentication [86][141]. To get EER, it is necessary to
calculate the False Positive Rate (FPR) and False Negative
Rate (FNR) at first, as shown in Eq. (26) and Eq. (27).
Here, TN means the number of negative instances correctly
classified as negative, FP means the number of negative
instances wrongly classified as positive, while TP means the
number of positive instances correctly classified as positive,
FN means the number of positive instances wrongly classified
as negative. Consequently, FPR means the proportion of
negative instances wrongly classified as positive, FNP means
the proportion of positive instances wrongly classified as
negative. When FRP = FNR, we can get EER with Eq.
(28). When using EER for classification, the lower EER, the
better.

FPR =
FP

TN + FP
(26)

FNR =
FN

TP + FN
(27)

EER = FRP = FNR (28)
C. Time latency

When considering the limited computing power of mobile
devices, the time cost in HAR will be considered. Specifically,
there are time cost for activity sensing, data processing, activ-
ity classification and overall time cost for HAR approach. Dif-
ferent application scenarios may have different requirements
of time cost. For example, in human-computer interactions,
unnoticeable time latency (i.e., below human response time
[68]) is expected. Usually, the time cost is affected by the
type of sensor data and the recognition approach. For example,
the time cost of processing image frames is much larger than
that of processing time-series data. Thus the optimizations like
multiple threads [77] for image processing were used to reduce
the time latency.

D. Energy consumption

Mobile devices are battery powered devices, thus the energy
consumption (or power consumption) of devices is often
considered in human activity recognition. There are energy
consumption of activity sensing, data processing, activity clas-
sification and overall energy consumption of a HAR system.
To measure the power consumption, the Monsoon power mon-
itor [213], the software tool PowerTutor [214] and “Battery
Historian” from Google [57] can be used. When guaranteeing
the recognition performance, the lower energy consumption
the better.

E. Implementation ways

Due to the limited resources of mobile devices, some HAR
research work transmitted sensor data from the mobile device

(a) Local (b) Local-mobile (c) Local-server

Mobile device Server
Smart glasses/
smartwatch Smartphone

Mobile device
(own self)

Fig. 25. Implementation ways of mobile device-based HAR.

to a more powerful computer or server for further computa-
tion. Consequently, according to whether the HAR approach
works on the mobile device, we can classify the existing
HAR approaches into two categories, i.e., online approaches
[121][57][86] and offline approaches [47][63][60]. As shown
in Fig. 25(a), a mobile device (i.e., smartphone, smartwatch or
smart glasses) performs all steps (except for model training) of
HAR on the device locally. This is an online HAR approach.
In regard to the approaches shown in Fig. 25(b) and Fig.
25(c), they belong to offline approaches. However, there is
some difference between the implementation ways in Fig.
25(b) and Fig. 25(c). In Fig. 25(b), the HAR approach is
performed in “local-mobile” way, where the smartwatch (or
smart glasses) usually sends the collected sensor data to
smartphone through Bluetooth and the smartphone processes
data for HAR. In Fig. 25(c), the HAR approach is performed
in “local-server” way, where the mobile device sends the
collected sensor data to a computer/server through Bluetooth,
WiFi, or mobile data network and then the server processes
data for HAR. Whatever in online or offline approaches,
the training process can be done offline, i.e., training in a
computer or server. The machine learning tool WEKA [215]
was often adopted for offline training traditional classifiers,
while the server configured with GPUs was often adopted
for offline training deep learning models. In regard to the
trained model, it can be deployed on the mobile device or a
computer/server. Consequently, ‘online’ approaches mean that
the processes of activity sensing, data processing and activity
classification of HAR are done locally on mobile devices [14].
On the contrary, ‘offline’ approaches mean that the processes
of data processing or activity classification are done out of the
mobile device. Usually, the ‘offline’ research work uses the
mobile devices as sensing modules, while processing sensor
data in a powerful computer/server. In Table XV, we show the
implementation ways of some HAR research work. When the
work is implemented online, the recognition performance, time
cost and energy consumption are often measured. Otherwise,
the work is mainly evaluated with recognition performance.

F. Learned lessons about evaluation standards

Characteristics of evaluation metrics: To measure the
recognition performance of HAR work, the metrics of accu-
racy, precision, recall, F1-score and equal error rate were often
adopted. Among these metrics, the accuracy was designed
to evaluate the overall classification performance, and was
most frequently used. In regard to precision, recall, F1-score
and equal error rate, they were used to provide a further
detailed evaluation of recognition performance from different
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TABLE XV
EXAMPLES OF PERFORMANCE METRICS USED IN HAR

Recognition Time Power Imp Dev

Typing: Mic [123] Acy: 85.5% - 97.6%; Pre: 87%, Rec: 85% — — — SP

Typing: Cam [77] Acy: 95.0%; FPR: 4.8% 50 ms 1729 mW Online SP

Typing: IMU [75] Detection rate: 94.6% — — Offline SW

Typing: Mic, gyro [68] Acy: 95% 51.4 ms 194.7 mW Online SP

Daily activities: Acc [40] Acy: about 95%; Pre: 90.19% — — Offline SP

Handwriting: Acc [117] Acy: 91.9% — 100 mW (Sensing) Offline SP

Heartbeating: Acc [92] Acy: 96.49% 48.35 ms 153.2 mW Online SP

Sleeping: Acc [118] Lab: F: 76.1%, Pre: 66.7%; Rec: 88.8%; Wild: F: 71.3%; Pre:
65.2%; Rec: 78.6%

— — Offline SW

Snooping pwds: IMU; RNN [128] Acy: 87%-93%; Pre: 67%-79%; Rec: 84%-88%; F: 71%-82% <0.5s — Online SW

Snooping pwds: IMU; Euc-dist [84] Top-5 success rate: 92% — — Offline SW

Mic: Microphone, Cam: Camera, IMU: 6-axis inertial sensor; Gyro: Gyroscope, Acc: Accelerometer
Acy: Accuracy, Pre: Precision, Rec: Recall, FPR: False positive rate, F: F1-score
pwds: passwords, Euc-dist: Euclidean distance, Imp: Implementation, Dev: Device, SP: Smartphone, SW: Smartwatch

aspects. Besides, considering that mobile devices are resource-
limited, the time latency and power consumption were also
introduced for performance evaluation. However, only a small
part of HAR research work reported the metrics of time latency
and power consumption. This is because that only HAR
approaches implemented in an online way can be measured
with time latency and power consumption, while most of HAR
work were implemented in an offline way and could not be
measured with the two metrics.

Fairness in performance comparison: In Table XV, we
show the recognition performance of the same activity using
different sensors, different activities using the same sensor,
and the same activity using the same sensor while adopting
different recognition approaches. It is worth noting that the
application scenario, specific recognition task and sensor data
in each work can be different. It can be inappropriate to
directly compare the recognition performance of different
HAR research work. For example, the recognition accuracy
of daily activities in [40] is about 95%, while recognition
accuracy of handwriting in [117] is 91.9%, but we can not
claim that the recognition performance of [40] is better than
that of [117], because the recognized activities are different.
To achieve a fair comparison, it is meaningful to compare the
performance of HAR research work using the same data set.
In the past, the research work tended to use self-collected data
for performance evaluation, and reproduced the approaches in
other work for comparison. Recently, more and more datasets
were made public, and more and more research work adopted
public datasets for fair comparisons.

VIII. APPLICATION CASES

Due to the popularization and intelligence of mobile de-
vices, human activity recognition based on mobile devices
has been adopted in daily life. Until now, HAR are mainly
applied in the following scenarios: exercise assessment, daily
life monitoring, human-computer interactions, security and
authentication, as described below.

A. Exercise assessment

Exercise assessment aims to evaluate how the user does
exercises, e.g., which kind of exercise the user is doing, how
much time is used for each exercise, how well an activity
is performed. Human activity recognition is the core technol-
ogy for exercise assessment, it is often used to detect and
recognize exercise activities, e.g., barbell bench press, rower,
dumbbell bench press, running, etc. The applications include
COPDTrainer [132], FitCoach [102], MAR [129], ArmTroi
[44], RehabPhone [96] were proposed to exploit the typical
repetitive structure of motion exercises, recognize fitness ex-
ercises to achieve effective workout and prevent injury, rec-
ognize complex activities in exercises, recognize free-weight
exercises, realize home-based rehabilitation, respectively. The
application system NuActiv [95] was proposed to recognize
unseen new exercise activities. In addition to different exercise
activities, other applications were also proposed to recognize
the specific activities in a kind of sports, e.g., strokes in table
tennis [49][50], activity styles in swimming [101].

B. Daily life monitoring

Daily life monitoring can benefit many application scenar-
ios, e.g., logging daily activities [13], providing a healthy life
styles, detecting dangerous events like falls. The activities in
daily life include the common activities [44][97][104][98] like
walking, walking upstairs and downstairs, jogging, watching
TV, eating, washing dishes, shaking hands, making a call etc;
a series of activities in a specific scenario (e.g., activities
in drinking [106] or toothbrushing [52]); and the vital sign
changes [89] like breathing, heartbeating and coughs. For
example, Lasagna [38] was proposed to recognize the common
daily activities to provide deep understanding of arbitrary
activities and semantic searching of activities, FluidMeter
[106] was proposed to recognize a series of activities in
drinking, while Hygiea [47] was proposed to recognize a series
of fine-grained activities in toothbrushing. In regard to daily
activities related to vital sign changes, SleepMonitor [118],
SleepGuard [108], iSleep [107], ApneaApp [90], SymDetector
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Fig. 26. HAR application cases.

[87] were proposed to detect sleep related events, e.g., body
movements [118][108], snore [107][108], cough [107][108],
sleep apnea [90][93]. In addition to sleeping, MindfulWatch
[91] and SymDetector [87] were proposed to sense respiration
related events, e.g, respiration rate [91], sneeze [87], sniffle
[87].

C. Human-computer interaction

Human-computer interactions (HCI) allow people to interact
with devices based on human gestures, which include both
coarse-grained and fine-grained gestures. Due to the limited
screen of mobile devices, many kinds of interaction modes
[119][134][114][61] were proposed to interact with devices,
especially input modes [68][77]. For example, AirContour
[48], PhonePoint Pen [117], SHOW [80], SignSpeaker [109],
WordRecorder [81], WritingRecorder [63], and WriteAS [64]
were proposed to recognize arm or hand gestures to provide
gesture-based input or interaction methods for devices. The
gesture based input methods can transform gestures as text.
Unlike arm or hand gestures, GlassGesture [54] was proposed
to provide a head gesture based user interface. Besides,
to provide fine-grained interaction methods, the applications
UbiTouch [58], VSkin [121], Dolphins [135], UbiK [68],
CamK [77], Serendipity [127], WatchOut [126], TriTap [79],
1D Handwriting [69], and ViFin [66] were proposed to provide
finger gesture based input or interaction methods for mobile
devices. In addition to gestures from arms, heads, hands or
fingers, the micro lip motions, tongue movements [61] and
eye movements [73] were also proposed for HCI. For example,
ProxiTalk [99], Whoosh [122], SilentTalk [82], EchoWhisper
[71], and SoundLip [60] were proposed to assist for the input
of speech. EyeSpyVR [83] and GazeSpeak [78] were proposed
to provide eye/gaze gesture based interaction methods with
devices. Instead of interacting with a single device, SynCro
[115] was proposed to provide cross-device interactions.

D. Security and authentication
As mentioned before, mobile devices have come into peo-

ple’s daily life and they often contain a lot of sensitive personal
information, thus it is essential to protect the security of
mobile devices. Until now, the existing work mainly focused
on the issues of breaking the security [67][123] and user
authentication [42][92][70]. In regard to the security issues,
MoLe [75] was proposed to infer the typed information on a
laptop keyboard while wearing a smart watch, WritingHacker
[131] and MagHacker [55] were proposed to eavesdrop the
handwriting information, while WristSpy [84] and Snoopy
[74] were proposed to infer the PIN or pattern performed on
the mobile device. In regard to user authentication, Glass-
Gesture [54] was proposed to recognize head gestures for
user authentication. HoldPass [65] was proposed to utilize
hand vibration in response to the cardiac cycle for user
authentication. GEAT [130], Garda [125], DeepAuth [128],
RhyAuth [124], Taprint [57], TouchPrint [85], TouchID [86],
and SwipePass [120] were proposed to utilize finger gestures
on touch screens or the back of hand for user authentication.
EyeVeri [62] and LipPass [59] were proposed to utilize the
micro eye movements and lip motions for user authentication.
BreathPrint [94] and CardioCam [88] were proposed to utilize
vital sign changes like breathing and cardiac biometrics for
user authentication.

E. Learned lessons about application cases
Characteristics of applications: We show the typical

HAR application cases in Fig. 26. In exercise assessment,
the researched activities mainly belonged to fitness exercises
(especially free-weight exercises) and specific activities in
some kinds of sports. The application scenarios of different
research work can be similar. In daily life monitoring, the
researched activities often belonged to locomotions, sleeping,
brushing, drinking, etc. Although there were a lot of research
work on daily life monitoring, the application scenarios of
them were similar. Besides, due to the public datasets on
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daily life, the application scenarios of research work using the
same public datasets could be the same. In human-computer
interactions, each research work had its own specific scenario.
As shown in Fig. 26, there were a lot of specific scenarios
in HCI, and the specific scenario in one work was different
from that in another work. The reason may be that HCI is
not limited to fixed scenarios and can be achieved in a variety
of ways. In regard to security and authentication, they were
similar to HCI and could be achieved in many different ways.
It is worth noting that in daily life monitoring and human-
computer interactions, real-time feedback is often needed, thus
the sensor data or HAR recognition result often needs to
be transmitted through network between mobile devices and
servers.

Researched applications over time: In Fig. 27(a), we
provide the statistics of HAR applications. It can be found
that the most of application scenarios belonged to daily life
monitoring. One reason may be that daily life contains a
lot of human activities to be researched, e.g., locomotions,
transportations, working, washing, cooking, sleeping, etc. The
other reason may be that the activities in most of public
datasets belong to daily life activities, and the increased use
of public datasets will bring more HAR work on daily life
monitoring. When moving to human-computer interactions as
well as security and authentication, they were also common
applications. In regard to exercise assessment or other applica-
tions, there were less studied. To further analyze the research
trends in applications, we also provide the statistics of HAR

applications in each year. As shown in Fig. 27(b), daily life
monitoring was alway paid high attention, from the past to the
present. Exercise assessment was researched in several years,
but it attracted little attention in recent two years. Human-
computer interactions had attracted wide attention, especially
from 2016. Security and authentication were also studied well
from 2015. In regard to other applications, they were rarely
researched and occurred sporadically.

Open problems: Although a lot of effort has been made
in HAR, there is still a gap between the researched HAR
and the real application. Firstly, the sensor data of human
activities is usually collected by users manually in controlled
environments, thus the noises and unexpected interferences are
limited. Besides, manually controlling the start and the end
of collection process can also reduce the difficulty of data
segmentation. However, in a real scenario, the sensor data of
an activity can be affected by many factors, and the sensor data
may contain all kinds of activities or interferences in a continu-
ous manner, thus increasing the difficulty of data preprocessing
and activity recognition. Secondly, the subjects recruited for
experiments are usually college students, who may be different
from the subjects (e.g., elderly people) in real applications.
The different patterns of activities between recruited subjects
and real users may make the HAR approach hard to work
in real applications. Thirdly, many HAR approaches focus on
data processing and activity recognition performance, while
paying little attention to system implementation. However,
the real applications may require real-time feedback of HAR.
Therefore, more effort is expected to apply HAR approaches
in real applications.

IX. FUTURE RESEARCH CONSIDERATIONS

Based on the review of existing research work, we also
summarize some potential research directions in human ac-
tivity recognition based on mobile devices, from the aspects
of human activities, sensing ways, recognition approaches and
evaluation standards, as described below.

Complex activity recognition: Due to the advancement of
HAR, more and more attention is paid to the more challeng-
ing recognition task, e.g., recognizing the very fine-grained
activities like heartbeating. However, in fact, in addition to the
fine-grained activities, there are a lot of complex activities like
cooking and cleaning, which bring in new challenges in HAR.
For example, in complex activities, different types of activities
can occur in a same duration, people can switch from one
activity to another in a seamless way, interference activities can
occur among complex activities. Therefore, further research is
expected for complex activity recognition.

New-class activity recognition: The existing research work
usually focuses on recognizing fixed types of activities, i.e.,
the number of activity classes is fixed. Thus they often fail to
recognize activities in new classes. However, in a real scenario,
there are a large number of human activities, recognizing a few
fixed activities may limit the application of HAR approaches.
To address this problem, few-shot learning is expected to
be adopted in the future research for recognizing new-class
activity, while incremental learning is expected to be adopted
for recognizing both new-class and old-class activities.
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Multi-modal sensing and fusion: As the sensing modules
of mobile devices become richer, it is possible to get multiple
types of sensor data in activity sensing. Usually, each type
of sensor has its own advantage, thus combining multi-modal
sensor data for activity sensing can contribute to a better
recognition performance. However, each sensor also has its
limitation, combining all sensors may lead to data conflict
and increase the sensing and computation overhead. Therefore,
more research is expected to select suitable sensors for sensing
and design appropriate methods for multi-modal data fusion.

Low requirement of data annotation: The existing work
usually adopts supervised learning based approaches for HAR,
thus often depends on enough labeled data for model training.
However, collecting and annotating training data are labor
intensive and time consuming. To reduce the requirement
of data annotation, data augmentation and automatic data
annotation scheme are expected to generate labeling data with
low cost. Besides, semi-supervised learning approaches using
a small amount of labeled data and unsupervised learning
approaches not using labeled data are expected to be adopted
for mobile device-based HAR.

Cross-domain recognition approaches: Since mobile de-
vices can be easily carried anytime anywhere, the phone states,
environments, user states can change from time to time in
HAR. Consequently, the data distribution of human activities
can also change, and it may lead to poor HAR performances.
To make HAR approaches work under different conditions,
the cross-domain recognition approaches are expected. Specif-
ically, we can introduce domain adaptation technologies to
make the HAR approaches designed in source domains adapt
to target domain. Besides, we can also introduce domain
generalization technologies to make HAR approaches ignore
the differences among different domains.

Light-weight recognition approaches: Due to the develop-
ment of Artificial Intelligence (AI), a lot of machine learning
based algorithms were proposed for HAR, especially the deep
learning based algorithms proposed in recent years. However,
due to the complexity, deep learning based algorithms were
often implemented in an offline way. In fact, a lot of HAR
work based on mobile devices is expected to work online,
especially in human-computer interactions. Therefore, further
research is expected to design light-weight algorithms to
improve the recognition performance of HAR while making
the algorithm work in an online way.

Standardization for comparison: Until now, there has
been a lot of HAR research work based on mobile devices.
However, due to the difference in recognition tasks, sensor
data sets, experiment settings and evaluation metrics, the
activity recognition performance in one paper is different
from that in other papers and it is difficult to make a fair
comparison between papers. Therefore, the standardization of
HAR research work based on mobile devices is expected. For
example, the public data sets, the standardized experiment
settings and the common evaluation metrics are encouraged
to be adopted.

X. CONCLUSION

In this paper, we reviewed the research work on human
activity recognition based on COTS mobile devices, which
refer to smartphones, smartwatches and smart glasses. These
work only used the on-board sensors of mobile devices for
sensing, and performed activity recognition online or offline.
We systematacially reviewed the existing work from the main
components in HAR, i.e., human activities, sensor data, data
preprocessing, recognition approaches, evaluation standards
and application cases. Besides, we also provide deep analysis
and comparison of the work from each main aspect of HAR.
Finally, we demonstrate some potential directions in future
research for mobile device-based HAR.
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