
网络层: 控制平面
殷亚凤

智能软件与工程学院
苏州校区南雍楼东区225

yafeng@nju.edu.cn，https://yafengnju.github.io/

Outline

• Routing among ISPs: BGP

• SDN control plane

• Internet Control Message Protocol

• Network management, configuration

Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1
AS21a

2c
2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

intra-AS (aka “intra-domain”): routing among routers within same
AS (“network”)

inter-AS (aka “inter-domain”): routing among AS’es

Internet inter-AS routing: BGP

• BGP (Border Gateway Protocol): the de facto inter-domain routing
protocol
Ø “glue that holds the Internet together”

• allows subnet to advertise its existence, and the destinations it can
reach, to rest of Internet: “I am here, here is who I can reach, and how”

• BGP provides each AS a means to:
Ø obtain destination network reachability info from neighboring ASes (eBGP)
Ø determine routes to other networks based on reachability information and

policy
Ø propagate reachability information to all AS-internal routers (iBGP)
Ø advertise (to neighboring networks) destination reachability info

eBGP, iBGP connections

eBGP connectivity
logical iBGP connectivity

1b

1d

1c1a

2b

2d

2c2a
3b

3d

3c3a
AS 2

AS 3AS 1

1c

∂

∂

gateway routers run both eBGP and iBGP protocols

BGP basics

• when AS3 gateway 3a advertises path AS3,X to AS2 gateway 2c:
Ø AS3 promises to AS2 it will forward datagrams towards X

• BGP session: two BGP routers (“peers”) exchange BGP messages over
semi-permanent TCP connection:
Ø advertising paths to different destination network prefixes

(BGP is a “path vector” protocol)

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

XBGP advertisement:
AS3, X

Path attributes and BGP routes

• BGP advertised route: prefix + attributes
Ø prefix: destination being advertised
Ø two important attributes:
Ø AS-PATH: list of ASes through which prefix advertisement has passed
Ø NEXT-HOP: indicates specific internal-AS router to next-hop AS

• policy-based routing:
Ø gateway receiving route advertisement uses import policy to accept/decline

path (e.g., never route through AS Y).
Ø AS policy also determines whether to advertise path to other other

neighboring ASes

BGP path advertisement

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

• based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP)
to all AS2 routers

AS2,AS3,X

• AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a

• based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to
AS1 router 1c

AS3, X

BGP path advertisement: multiple paths

AS2,AS3,X

Ø AS1 gateway router 1c learns path AS2,AS3,X from 2a

gateway router may learn about multiple paths to destination:

AS3,X

Ø AS1 gateway router 1c learns path AS3,X from 3a
Ø based on policy, AS1 gateway router 1c chooses path AS3,X and advertises

path within AS1 via iBGP

AS3, X
2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X
AS3,X

AS3,X

AS3,X

BGP: populating forwarding tables

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

AS2,AS3,X

AS3,X

AS3, X

• recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

• at 1d: OSPF intra-domain routing: to get to 1c, use interface 1

12

1

2

dest interface
…

…

…

…

local link
interfaces
at 1a, 1d

• at 1d: to get to X, use interface 1

1c 1
X 1

AS3,X
AS3,X

AS3,X

BGP: populating forwarding tables

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

• recall: 1a, 1b, 1d learn via iBGP from 1c: “path to X goes through 1c”

• at 1d: OSPF intra-domain routing: to get to 1c, use interface 1

1

2

• at 1d: to get to X, use interface 1

dest interface
…

…

…

…

1c 2
X 2

• at 1a: OSPF intra-domain routing: to get to 1c, use interface 2

• at 1a: to get to X, use interface 2

Hot potato routing

2b

2d

2c2a

AS 2

3b

3d

3c3a

AS 3

1b

1d

1c1a

AS 1

X

• 2d learns (via iBGP) it can route to X via 2a or 2c

• hot potato routing: choose local gateway that has least intra-domain
cost (e.g., 2d chooses 2a, even though more AS hops to X): don’t worry
about inter-domain cost!

AS3,X AS1,AS3,X

OSPF link weights

201

112

263

BGP: achieving policy via advertisements

B
legend:

customer
network:

provider
network

• A advertises path Aw to B and to C
• B chooses not to advertise BAw to C!

Ø B gets no “revenue” for routing CBAw, since none of C, A, w are B’s customers
Ø C does not learn about CBAw path

• C will route CAw (not using B) to get to w

ISP only wants to route traffic to/from its customer networks (does not want
to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

A,w

A,w

BGP: achieving policy via advertisements (more)

B

ISP only wants to route traffic to/from its customer networks (does not want
to carry transit traffic between other ISPs – a typical “real world” policy)

w A
yC

x

• A,B,C are provider networks
• x,w,y are customer (of provider networks)
• x is dual-homed: attached to two networks
• policy to enforce: x does not want to route from B to C via x

Ø .. so x will not advertise to B a route to C

legend:
customer
network:

provider
network

Why different Intra-, Inter-AS routing ?

policy:
• inter-AS: admin wants control over how its traffic routed,

who routes through its network
• intra-AS: single admin, so policy less of an issue

scale:
• hierarchical routing saves table size, reduced update traffic

performance:
• intra-AS: can focus on performance
• inter-AS: policy dominates over performance

BGP route selection

• router may learn about more than one route to destination
AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH

3. closest NEXT-HOP router: hot potato routing

4. additional criteria

Outline

• Routing among ISPs: BGP

• SDN control plane

• Internet Control Message Protocol

• Network management, configuration

Software defined networking (SDN)

• Internet network layer: historically implemented via
distributed, per-router control approach:
– monolithic router contains switching hardware, runs proprietary

implementation of Internet standard protocols (IP, RIP, IS-IS,
OSPF, BGP) in proprietary router OS (e.g., Cisco IOS)

– different “middleboxes” for different network layer functions:
firewalls, load balancers, NAT boxes, ..

• ~2005: renewed interest in rethinking network control plane

Per-router control plane
Individual routing algorithm components in each and every router
interact in the control plane to computer forwarding tables

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header

3

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving
packet header

Software defined networking (SDN)

Why a logically centralized control plane?

• easier network management: avoid router misconfigurations, greater
flexibility of traffic flows

• table-based forwarding (recall OpenFlow API) allows “programming” routers
–centralized “programming” easier: compute tables centrally and distribute
–distributed “programming” more difficult: compute tables as result of distributed

algorithm (protocol) implemented in each-and-every router

• open (non-proprietary) implementation of control plane
– foster innovation: let 1000 flowers bloom

SDN analogy: mainframe to PC revolution

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized
Operating
System

Specialized
Hardware

A
pp

A
pp

A
pp

A
pp

A
pp

A
pp

A
pp

A
pp

A
pp

A
ppApp

Specialized
Applications

Horizontal
Open interfaces
Rapid innovation
Huge industry

Microprocessor

Open Interface

or or

Open Interface

Windows Linux MAC OS

Traffic engineering: difficult with traditional routing

2
2

1
3

1

1

2

5
3

5

v w

u z

yx

Q: what if network operator wants u-to-z traffic to flow along uvwz, rather
than uxyz?
A: need to re-define link weights so traffic routing algorithm computes
routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!

Traffic engineering: difficult with traditional routing

2
2

1
3

1

1

2

5
3

5

v w

u z

yx

Q: what if network operator wants to split u-to-z traffic along uvwz and
uxyz (load balancing)?

A: can’t do it (or need a new routing algorithm)

Traffic engineering: difficult with traditional routing

Q: what if w wants to route blue and red traffic differently from w to z?
A: can’t do it (with destination-based forwarding, and LS, DV routing)

2
2

1
3

1

1

2

5
3

5

v w

u z

yx

We learned in Chapter 4 that generalized forwarding and SDN
can be used to achieve any routing desired

Software defined networking (SDN)

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1. generalized “flow-based”
forwarding (e.g., OpenFlow)

2. control, data
plane separation

3. control plane
functions external to
data-plane switches

…routing access
control

load
balance4. programmable

control applications

Software defined networking (SDN)

Data-plane switches:

• fast, simple, commodity switches
implementing generalized data-plane
forwarding (Section 4.4) in hardware

• flow (forwarding) table computed,
installed under controller supervision

• API for table-based switch control
(e.g., OpenFlow)
Ø defines what is controllable, what is not

• protocol for communicating with
controller (e.g., OpenFlow)

data
plane

control
plane

SDN Controller
(network operating system)

…routing
access
control

load
balance

southbound API

northbound API

SDN-controlled
switches

network-control
applications

Software defined networking (SDN)
SDN controller (network OS):

• maintain network state
information

• interacts with network control
applications “above” via
northbound API

• interacts with network switches
“below” via southbound API

• implemented as distributed
system for performance,
scalability, fault-tolerance,
robustness

data
plane

control
plane

SDN Controller
(network operating system)

…routing
access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control
applications

Software defined networking (SDN)

network-control apps:

• “brains” of control: implement
control functions using lower-
level services, API provided
by SDN controller

• unbundled: can be provided by
3rd party: distinct from
routing vendor, or SDN
controller

data
plane

control
plane

SDN Controller
(network operating system)

…routing
access
control

load
balance

southbound API

northbound API

SDN-controlled switches

network-control
applications

Components of SDN controller

Network-wide distributed, robust state management

Communication to/from controlled devices

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP
…

network
graph intent

RESTful
API

…
Interface, abstractions for network control apps

SDN
controller

routing access
control

load
balance

communication:
Ø communicate between

SDN controller and
controlled switches

network-wide state
management :
Ø state of networks links,

switches, services:
a distributed database

interface layer to network
control apps:
Ø abstractions API

OpenFlow protocol

• operates between controller, switch

• TCP used to exchange messages
Ø optional encryption

• three classes of OpenFlow messages:
Ø controller-to-switch
Ø asynchronous (switch to controller)
Ø symmetric (misc.)

• distinct from OpenFlow API
Ø API used to specify generalized forwarding

actions

OpenFlow Controller

OpenFlow: controller-to-switch messages

Key controller-to-switch messages
§ features: controller queries switch

features, switch replies

§ configure: controller queries/sets
switch configuration parameters

§ modify-state: add, delete, modify flow
entries in the OpenFlow tables

§ packet-out: controller can send this
packet out of specific switch port

OpenFlow Controller

OpenFlow: switch-to-controller messages

Key switch-to-controller messages
• packet-in: transfer packet (and its

control) to controller. See packet-out
message from controller

• flow-removed: flow table entry deleted
at switch

• port status: inform controller of a
change on a port.

Fortunately, network operators don’t “program” switches by creating/sending
OpenFlow messages directly. Instead use higher-level abstraction at controller

OpenFlow Controller

SDN: control/data plane interaction example

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP…

network
graph intentRESTful

API
…

Dijkstra’s link-state
routing

s1
s2

s3
s4

S1, experiencing link failure uses
OpenFlow port status message to
notify controller

1

SDN controller receives OpenFlow
message, updates link status info

2

Dijkstra’s routing algorithm
application has previously
registered to be called when ever
link status changes. It is called.

3

Dijkstra’s routing algorithm
access network graph info, link
state info in controller,
computes new routes

4
1

2

3

4

SDN: control/data plane interaction example

Link-state info switch infohost info

statistics flow tables
…

…

OpenFlow SNMP…

network
graph intentRESTful

API
…

Dijkstra’s link-state
routing

s1
s2

s3
s4

link state routing app interacts
with flow-table-computation
component in SDN controller,
which computes new flow tables
needed

5

controller uses OpenFlow to
install new tables in switches
that need updating

6

5

61

2

3

4

Outline

• Routing among ISPs: BGP

• SDN control plane

• Internet Control Message Protocol

• Network management, configuration

ICMP: internet control message protocol

• used by hosts and routers to
communicate network-level
information
Ø error reporting: unreachable host,

network, port, protocol
Ø echo request/reply (used by ping)

• network-layer “above” IP:
Ø ICMP messages carried in IP

datagrams

• ICMP message: type, code plus
first 8 bytes of IP datagram
causing error

Type Code description
0 0 echo reply (ping)
3 0 dest. network unreachable
3 1 dest host unreachable
3 2 dest protocol unreachable
3 3 dest port unreachable
3 6 dest network unknown
3 7 dest host unknown
4 0 source quench (congestion

control - not used)
8 0 echo request (ping)
9 0 route advertisement
10 0 router discovery
11 0 TTL expired
12 0 bad IP header

Traceroute and ICMP

• when ICMP message arrives at source: record RTTs

stopping criteria:
• UDP segment eventually

arrives at destination host

• destination returns ICMP
“port unreachable”
message (type 3, code 3)

• source stops

• source sends sets of UDP segments to
destination
Ø 1st set has TTL =1, 2nd set has TTL=2, etc.

• datagram in nth set arrives to nth router:
Ø router discards datagram and sends source ICMP

message (type 11, code 0)
Ø ICMP message possibly includes name of router & IP

address

3 probes

3 probes

3 probes

Outline

• Routing among ISPs: BGP

• SDN control plane

• Internet Control Message Protocol

• Network management, configuration

What is network management?

• autonomous systems (aka “network”): 1000s of interacting
hardware/software components

• other complex systems requiring monitoring, configuration, control:
– jet airplane, nuclear power plant, others?

"Network management includes the deployment, integration
and coordination of the hardware, software, and human
elements to monitor, test, poll, configure, analyze, evaluate,
and control the network and element resources to meet the
real-time, operational performance, and Quality of Service
requirements at a reasonable cost."

Components of network management

managed device
managed device

managed device

managed device

managed device

agent data

agent data
agent data

agent data

agent data

managing
server/controller

data

Managing server:
application, typically
with network
managers (humans)
in the loop

Managed device:
equipment with manageable,
configurable hardware,
software components

Data: device “state”
configuration data,
operational data, device
statistics

Network management
protocol: used by
managing server to
query, configure, manage
device; used by devices
to inform managing
server of data, events.

Network operator approaches to management

managed device
managed device

managed device

managed device

managed device

agent data

agent data
agent data

agent data

agent data

managing
server/controller

data

CLI (Command Line Interface)
• operator issues (types, scripts) direct

to individual devices (e.g., vis ssh)

SNMP/MIB
• operator queries/sets devices data

(MIB) using Simple Network
Management Protocol (SNMP)

NETCONF/YANG
• more abstract, network-wide, holistic
• emphasis on multi-device configuration

management.
• YANG: data modeling language
• NETCONF: communicate YANG-compatible

actions/data to/from/among remote devices

SNMP protocol

managed device

agent data

managing
server/controller

data

request

response trap message

Two ways to convey MIB info, commands:

request/response mode

managed device

agent data

managing
server/controller

data

trap mode

SNMP protocol: message types

GetRequest
GetNextRequest
GetBulkRequest

manager-to-agent: “get me data”
(data instance, next data in list,
block of data).

Message type Function

SetRequest manager-to-agent: set MIB value

Response Agent-to-manager: value, response to Request

Trap Agent-to-manager: inform manager of exceptional event

SNMP protocol: message formats

….
PDU
type
(0-3)

Request
ID

Error
Status
(0-5)

Error
Index Name Value Name Value

Get/set header Variables to get/set

SNMP PDU

message types 0-3

….
PDU
type
4

Enterp
rise

Agent
Addr

Trap
Type
(0-7)

Specific
code

Time
stamp Name Value

Trap header Trap info

message type 4

SNMP: Management Information Base (MIB)

• managed device’s operational (and some configuration) data
• gathered into device MIB module

– 400 MIB modules defined in RFC’s; many more vendor-specific MIBs

Object ID Name Type Comments
1.3.6.1.2.1.7.1 UDPInDatagrams 32-bit counter total # datagrams delivered
1.3.6.1.2.1.7.2 UDPNoPorts 32-bit counter # undeliverable datagrams (no application at port)
1.3.6.1.2.1.7.3 UDInErrors 32-bit counter # undeliverable datagrams (all other reasons)
1.3.6.1.2.1.7.4 UDPOutDatagrams 32-bit counter total # datagrams sent
1.3.6.1.2.1.7.5 udpTable SEQUENCE one entry for each port currently in use

agent data

• Structure of Management Information (SMI): data definition language
• example MIB variables for UDP protocol:

NETCONF overview

• goal: actively manage/configure devices network-wide

• operates between managing server and managed network devices
– actions: retrieve, set, modify, activate configurations
– atomic-commit actions over multiple devices
– query operational data and statistics
– subscribe to notifications from devices

• remote procedure call (RPC) paradigm
– NETCONF protocol messages encoded in XML
– exchanged over secure, reliable transport (e.g., TLS) protocol

NETCONF initialization, exchange, close

Session initiation,
capabilities exchange: <hello>

Session close: <close-session>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<rpc>
<rpc-reply>

<notification>

…
…

…
…

…

…
…

…
…

managing
server/controller

data

agent data

Selected NETCONF Operations

NETCONF Operation Description
<get-config> Retrieve all or part of a given configuration. A device may have

multiple configurations.
<get> Retrieve all or part of both configuration state and operational state

data.
<edit-config> Change specified (possibly running) configuration at managed device.

Managed device <rpc-reply> contains <ok> or <rpcerror> with rollback.
<lock>, <unlock> Lock (unlock) configuration datastore at managed device (to lock out

NETCONF, SNMP, or CLIs commands from other sources).
<create-subscription>, Enable event notification subscription from managed device
<notification>

Sample NETCONF RPC message

note message id

change the running configuration

change MTU of Ethernet 0/0 interface to 1500

change a configuration

YANG
• data modeling language used to specify

structure, syntax, semantics of NETCONF
network management data
– built-in data types, like SMI

• XML document describing device,
capabilities can be generated from YANG
description

• can express constraints among data that
must be satisfied by a valid NETCONF
configuration
– ensure NETCONF configurations

satisfy correctness, consistency
constraints

agent data

managing
server/controller

data

NETCONF RPC message

<edit-config>
YANG-generated XML

</edit-config> YANG
generated

课程习题（作业）——截止日期：4月29日晚23:59

• 课本287-291页：R4、R6、P3、P5、P7、P14题

• 提交方式：https://selearning.nju.edu.cn/（教学支持系统）

• 命名：学号+姓名+第*章。

• 若提交遇到问题请及时发邮件或在下一次上课时反馈。

https://selearning.nju.edu.cn/

课程习题（作业）——截止日期：4月29日晚23:59

课程习题（作业）——截止日期：4月29日晚23:59

课程习题（作业）——截止日期：4月29日晚23:59

课程习题（作业）——截止日期：4月29日晚23:59

实验2——截止日期：5月6日晚23:59

• 实验2：转发分组

• 提交方式：https://selearning.nju.edu.cn/（教学支持系统）

• 命名：学号+姓名+实验*。

• 若提交遇到问题请及时发邮件或在下一次上课时反馈。

https://selearning.nju.edu.cn/

Lab 2: Forwarding Packets

Overview
This is the second exercise for creating the "brains" of an IPv4 router. The basic functions of an Internet
router are to:
1. Respond to ARP (address resolution protocol) requests for addresses that are assigned to interfaces on
the router. (Remember that the purpose of ARP is to obtain the Ethernet MAC address associated with an
IP address so that an Ethernet frame can be sent to another host over the link layer.)
2. Receive and forward packets that arrive on links and are destined for other hosts. Part of the forwarding
process is to perform address lookups ("longest prefix match" lookups) in the forwarding table. We will just
use "static" routing in our router rather than a dynamic routing protocol like RIP or OSPF.
3. Make ARP requests for IP addresses that have no known Ethernet MAC address. A router will often have
to send packets to other hosts, and needs Ethernet MAC addresses to do so.
4. Respond to ICMP messages like echo requests ("pings").
5. Generate ICMP error messages when necessary, such as when an IP packet's TTL (time to live) value has
been decremented to zero.
The goal of this stage is to accomplish #2 and #3 above.

实验2——截止日期：5月6日晚23:59

Lab 2: Forwarding Packets

Task 1: Preparation
Initiate your project with our template.
Start the task here

Task 2: IP Forwarding Table Lookup
Build a forwarding table and match the destination addresses.
Start the task here

Task 3: Forwarding the Packet and ARP
Send an ARP query to create a new Ethernet header and forward the packet.
Start the task here

实验2——截止日期：5月6日晚23:59

https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/ipv4-router/lab-4/preparation
https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/ipv4-router/lab-4/forwarding-table-lookup
https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/ipv4-router/lab-4/make-arp-request

提问

殷亚凤
智能软件与工程学院

苏州校区南雍楼东区225
yafeng@nju.edu.cn，https://yafengnju.github.io/

Q & A

