
网络层: 控制平面
殷亚凤

智能软件与工程学院
苏州校区南雍楼东区225

yafeng@nju.edu.cn，https://yafengnju.github.io/

Outline

• Introduction
• Routing protocols

• Intra-ISP routing: OSPF

Network-layer functions

Two approaches to structuring network control plane:
Ø per-router control (traditional)
Ø logically centralized control (software defined networking)

• forwarding: move packets from router’s
input to appropriate router output

data plane

control plane• routing: determine route taken by
packets from source to destination

Per-router control plane
Individual routing algorithm components in each and every router
interact in the control plane

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header

3

Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving
packet header

Per-router control plane SDN control plane

Outline

• Introduction
• Routing protocols

• Intra-ISP routing: OSPF

Routing protocols

• Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving
host, through network of routers

Ø path: sequence of routers packets
traverse from given initial source host to
final destination host

Ø “good”: least “cost”, “fastest”, “least
congested”

Ø routing: a “top-10” networking challenge!

mobile network

enterprise
network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Graph abstraction: link costs

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely
related to bandwidth, or inversely
related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Routing algorithm classification

global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes
change more quickly
• periodic updates

or in response to
link cost changes

static: routes change
slowly over time

Dijkstra’s link-state routing algorithm

• centralized: network topology,
link costs known to all nodes
Ø accomplished via “link state

broadcast”
Ø all nodes have same info

• computes least cost paths from
one node (“source”) to all other
nodes
Ø gives forwarding table for that node

• iterative: after k iterations, know
least cost path to k destinations

§ cx,y: direct link cost from
node x to y; = ∞ if not
direct neighbors

§ D(v): current estimate of
cost of least-cost-path from
source to destination v

§ p(v): predecessor node
along path from source to v

§ N': set of nodes whose
least-cost-path definitively
known

notation

Dijkstra’s link-state routing algorithm
1 Initialization:
2 N‘ = {u} /* compute least cost path from u to all other nodes */
3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */
5 then D(v) = cu,v /* but may not be minimum cost! */
6 else D(v) = ∞
7

8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :

D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known
least-cost-path to w plus direct-cost from w to v */

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

D(w),p(w)
5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0):
For all a: if a adjacent to u then D(a) = cu,a

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

∞2,x4,x2,u

D(v) = min (D(v), D(x) + cx,v) = min(2, 1+2) = 2
D(w) = min (D(w), D(x) + cx,w) = min (5, 1+3) = 4
D(y) = min (D(y), D(x) + cx,y) = min(inf,1+1) = 2

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

4,y3,y2,u

D(w) = min (D(w), D(y) + cy,w) = min (4, 2+1) = 3
D(z) = min (D(z), D(y) + cy,z) = min(inf,2+2) = 4

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv

Dijkstra’s algorithm: an example

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

D(w) = min (D(w), D(v) + cv,w) = min (3, 2+3) = 3

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw

Dijkstra’s algorithm: an example

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

D(z) = min (D(z), D(w) + cw,z) = min (4, 3+5) = 4

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

uxyvwz

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

find a not in N' such that D(a) is a minimum
add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

uxyvwz

update D(b) for all b adjacent to a and not in N' :
D(b) = min (D(b), D(a) + ca,b)

Dijkstra’s algorithm: an example

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all other
destinations via x

Dijkstra’s algorithm: another example

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0
1

2
3

4
5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u
14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
§ construct least-cost-path tree by tracing predecessor nodes
§ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

Dijkstra’s algorithm: discussion

algorithm complexity: n nodes
• each of n iteration: need to check all nodes, w, not in N
• n(n+1)/2 comparisons: O(n2) complexity
• more efficient implementations possible: O(nlogn)

message complexity:
• each router must broadcast its link state information to other n routers
• efficient (and interesting!) broadcast algorithms: O(n) link crossings to

disseminate a broadcast message from one source
• each router’s message crosses O(n) links: overall message complexity: O(n2)

Dijkstra’s algorithm: oscillations possible
• when link costs depend on traffic volume, route oscillations possible

a
d

c
b

1 1+e

e0

e

1 1
0 0

initially

a
d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

a
d

c
b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1
0 0

a
d

c
b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

• sample scenario:
Ø routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
Ø link costs are directional, and volume-dependent

e
1 1

e
1 1

e
1 1

Distance vector algorithm

Based on Bellman-Ford (BF) equation (dynamic programming):

Let Dx(y): cost of least-cost path from x to y.
Then:

Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford Example

u

y

z
2

2
1

3

1

1
2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),
cu,x + Dx(z),
cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x = min {2 + 5,
1 + 3,
5 + 3} = 4

node achieving minimum (x) is next
hop on estimated least-cost path
to destination (z)

Distance vector algorithm

key idea:
• from time-to-time, each node sends its own distance vector

estimate to neighbors

• under minor, natural conditions, the estimate Dx(y) converge to
the actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

• when x receives new DV estimate from any neighbor, it updates
its own DV using B-F equation:

Distance vector algorithm
iterative, asynchronous: each local

iteration caused by:
• local link cost change
• DV update message from neighbor

wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping: each node
notifies neighbors only when its DV
changes
• neighbors then notify their

neighbors – only if necessary
• no notification received, no

actions taken!

recompute DV estimates using
DV received from neighbor

if DV to any destination has
changed, notify neighbors

Distance vector: example
DV in a:
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

§ All nodes have
distance
estimates to
nearest
neighbors (only)

A few asymmetries:
§ missing link
§ larger cost

d e f

a b c

§ All nodes send
their local
distance vector
to their
neighbors

Distance vector example: iteration

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=1

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=2

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance

vectors from
neighbors

§ compute their
new local
distance vector

§ send their new
local distance
vector to
neighbors

t=2

Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
§ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,2,∞} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞,∞, ∞} = ∞

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞,∞, 2} = 2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞,∞, ∞} = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9
Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1
Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2
Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞
Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞
Dc(h) = min{cc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

Distance vector example: computation

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ e receives DVs
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e
at t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and
may influence distance vector
computations up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence
distance vector computations up to 2
hops away, i.e., at b and now at a, e as well

t=2

c’s state at t=0 may influence distance
vector computations up to 3 hops away,
i.e., at d, f, h

t=3

c’s state at t=0 may influence distance
vector computations up to 4 hops away,
i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network:

t=1
t=2

t=3

t=4

Distance vector: link cost changes

“good news
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV. y’s least costs do not change,
so y does not send a message to z.

link cost changes:
• node detects local link cost change
• updates routing info, recalculates local DV
• if DV changes, notify neighbors

x z
14

50

y
1

Distance vector: link cost changes

link cost changes:
§ node detects local link cost change
§ “bad news travels slow” – count-to-infinity problem: x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So y
computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z computes “my new cost to x will be
7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost to x will be
8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost to x will be
9 via y), notifies y of new cost of 9 to x.
…

§ see text for solutions. Distributed algorithms are tricky!

Comparison of LS and DV algorithms
message complexity

LS: n routers, O(n2) messages sent
DV: exchange between neighbors;

convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2)

messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router
malfunctions, or is compromised?

LS:
• router can advertise incorrect link

cost
• each router computes only its own

table

DV:
• DV router can advertise incorrect

path cost (“I have a really low-cost
path to everywhere”): black-holing

• each router’s DV is used by others:
error propagate thru network

Outline

• Introduction
• Routing protocols

• Intra-ISP routing: OSPF

Making routing scalable

our routing study thus far - idealized
• all routers identical
• network “flat”

… not true in practice

scale: billions of destinations:
• can’t store all destinations in

routing tables!
• routing table exchange would

swamp links!

administrative autonomy:
• Internet: a network of

networks
• each network admin may want

to control routing in its own
network

Internet approach to scalable routing
aggregate routers into regions known as “autonomous systems”
(AS) (a.k.a. “domains”)

intra-AS (aka “intra-domain”): routing
among routers within same AS
(“network”)
• all routers in AS must run same intra-

domain protocol
• routers in different AS can run

different intra-domain routing
protocols

• gateway router: at “edge” of its own
AS, has link(s) to router(s) in other
AS’es

inter-AS (aka “inter-domain”):
routing among AS’es

• gateways perform inter-domain
routing (as well as intra-domain
routing)

Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c
2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table configured by intra-
and inter-AS routing algorithms

Intra-AS
Routing

Inter-AS
Routing • intra-AS routing determine entries for

destinations within AS
• inter-AS & intra-AS determine entries for

external destinations

Inter-AS routing: a role in intradomain forwarding

3b

1d

3a

1c
2a

AS3

AS1
AS21a

2c
2b

1b

3c

other
networks

other
networks

• suppose router in AS1 receives
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable

through AS2, which through AS3

2. propagate this reachability info to all
routers in AS1

Ø router should forward packet
to gateway router in AS1, but
which one?

OSPF (Open Shortest Path First) routing

• “open”: publicly available
• classic link-state

Øeach router floods OSPF link-state advertisements (directly
over IP rather than using TCP/UDP) to all other routers in
entire AS

Ømultiple link costs metrics possible: bandwidth, delay
Øeach router has full topology, uses Dijkstra’s algorithm to

compute forwarding table
• security: all OSPF messages authenticated (to prevent

malicious intrusion)

Hierarchical OSPF
§ two-level hierarchy: local area, backbone.
• link-state advertisements flooded only in area, or backbone
• each node has detailed area topology; only knows direction to reach

other destinations

area border routers:
“summarize” distances to
destinations in own area,
advertise in backbone

area 1
area 2

area 3

backbone

internal
routers

backbone router:
runs OSPF limited
to backbone

boundary router:
connects to other ASes

local routers:
• flood LS in area only
• compute routing within area
• forward packets to outside

via area border router

提问

殷亚凤
智能软件与工程学院

苏州校区南雍楼东区225
yafeng@nju.edu.cn，https://yafengnju.github.io/

Q & A

