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Network-layer functions

Two approaches to structuring network control plane:
Ø per-router control (traditional)
Ø logically centralized control (software defined networking)

• forwarding: move packets from router’s 
input to appropriate router output

data plane

control plane• routing: determine route taken by 
packets from source to destination



Per-router control plane
Individual routing algorithm components in each and every router 
interact in the control plane

Routing
Algorithm

data
plane

control
plane
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tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!
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Figure 4.2 ♦ Routing algorithms determine values in forward tables
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Software-Defined Networking (SDN) control plane

Remote controller computes, installs forwarding tables in routers

data
plane

control
plane
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Routing protocols

• Routing protocol goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving 
host, through network of routers

Ø path: sequence of routers packets 
traverse from given initial source host to 
final destination host

Ø “good”: least “cost”, “fastest”, “least 
congested”

Ø routing: a “top-10” networking challenge!
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Graph abstraction: link costs
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graph: G = (N,E)

ca,b: cost of direct link connecting a and b
e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely 
related to bandwidth, or inversely 
related to congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }



Routing algorithm classification

global or decentralized information?

global: all routers have complete 
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes 
change more quickly
• periodic updates 

or in response to 
link cost changes

static: routes change 
slowly over time



Dijkstra’s link-state routing algorithm

• centralized: network topology, 
link costs known to all nodes
Ø accomplished via “link state 

broadcast” 
Ø all nodes have same info

• computes least cost paths from 
one node (“source”) to all other 
nodes
Ø gives forwarding table for that node

• iterative: after k iterations, know 
least cost path to k destinations

§ cx,y: direct link cost from 
node x to y;  = ∞ if not 
direct neighbors

§ D(v): current estimate of 
cost of least-cost-path from 
source to destination v

§ p(v): predecessor node 
along path from source to v

§ N': set of nodes whose 
least-cost-path definitively 
known

notation



Dijkstra’s link-state routing algorithm
1  Initialization: 
2    N‘ = {u}                        /* compute least cost path from u to all other nodes */
3    for all nodes v 
4      if v adjacent to u        /* u initially knows direct-path-cost only to  direct neighbors   */
5          then D(v) = cu,v /* but may not be minimum cost!                                               */
6      else D(v) = ∞
7 

8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N'

find w not in N' such that D(w) is a minimum 
add w to N'
update D(v) for all v adjacent to w and not in N' : 

D(v) = min ( D(v),  D(w) + cw,v  )
/* new least-path-cost to v is either old least-cost-path to v or known 
least-cost-path to w plus direct-cost from w to v */ 



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)
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D(w),p(w)
5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0): 
For all a: if a adjacent to u then D(a) = cu,a 



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10    

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11    

find a not in N' such that D(a) is a minimum 
add a to N'
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

∞2,x4,x2,u

D(v) = min ( D(v), D(x) + cx,v ) = min(2, 1+2) = 2 
D(w) = min ( D(w), D(x) + cx,w ) = min (5, 1+3) = 4 
D(y) = min ( D(y), D(x) + cx,y ) = min(inf,1+1) = 2  



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

4,y3,y2,u

D(w) = min ( D(w), D(y) + cy,w ) = min (4, 2+1) = 3 
D(z) = min ( D(z), D(y) + cy,z ) = min(inf,2+2) = 4  



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

D(w) = min ( D(w), D(v) + cv,w ) = min (3, 2+3) = 3 

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 

D(z) = min ( D(z), D(w) + cw,z ) = min (4, 3+5) = 4 

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10

find a not in N' such that D(a) is a minimum 
add a to N'
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11

find a not in N' such that D(a) is a minimum 
add a to N'
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∞2,x4,x2,u
uxy 4,y3,y2,u
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update D(b) for all b adjacent to a and not in N' : 
D(b) = min ( D(b), D(a) + ca,b ) 



Dijkstra’s algorithm: an example
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resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all other 
destinations via x



Dijkstra’s algorithm: another example

w3
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v
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9Step N'
D(v),
p(v)

0
1
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D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u
14,x 11,w 6,wuwx

uwxv 14,x 10,v 

uwxvy 12,y 

notes:
§ construct least-cost-path tree by tracing predecessor nodes
§ ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z



Dijkstra’s algorithm: discussion

algorithm complexity: n nodes
• each of n iteration: need to check all nodes, w, not in N
• n(n+1)/2 comparisons: O(n2) complexity
• more efficient implementations possible: O(nlogn)

message complexity:
• each router must broadcast its link state information to other n routers 
• efficient (and interesting!) broadcast algorithms: O(n) link crossings to 

disseminate a broadcast message from one source
• each router’s message crosses O(n) links: overall message complexity: O(n2)



Dijkstra’s algorithm: oscillations possible
• when  link costs depend on traffic volume, route oscillations possible
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find new routing….
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• sample scenario:
Ø routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
Ø link costs are directional, and volume-dependent

e
1 1

e
1 1

e
1 1



Distance vector algorithm 

Based on Bellman-Ford (BF) equation (dynamic programming):

Let Dx(y): cost of least-cost path from x to y.
Then:

Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford Example
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Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),
cu,x + Dx(z),
cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x = min {2 + 5,
1 + 3,
5 + 3}  = 4

node achieving minimum (x) is next 
hop on estimated least-cost path 
to destination (z)



Distance vector algorithm 

key idea: 
• from time-to-time, each node sends its own distance vector 

estimate to neighbors

• under minor, natural conditions, the estimate Dx(y) converge to 
the actual least cost dx(y) 

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

• when x receives new DV estimate from any neighbor, it updates 
its own DV using B-F equation:



Distance vector algorithm 
iterative, asynchronous: each local 

iteration caused by: 
• local link cost change 
• DV update message from neighbor

wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each node 
notifies neighbors only when its DV 
changes
• neighbors then notify their 

neighbors – only if necessary
• no notification received, no 

actions taken!

recompute DV estimates using 
DV received from neighbor

if DV to any destination has 
changed, notify neighbors 



Distance vector: example
DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

§ All nodes have 
distance 
estimates to 
nearest 
neighbors (only)

A few asymmetries:
§ missing link
§ larger cost

d e f

a b c

§ All nodes send 
their local 
distance vector 
to their 
neighbors



Distance vector example: iteration

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their 
new local  
distance vector

§ send their new 
local distance 
vector to 
neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their 
new local  
distance vector

§ send their new 
local distance 
vector to 
neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their 
new local  
distance vector

§ send their new 
local distance 
vector to 
neighbors

t=1



Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their 
new local  
distance vector

§ send their new 
local distance 
vector to 
neighbors

t=2



Distance vector example: iteration

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their 
new local  
distance vector

§ send their new 
local distance 
vector to 
neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
§ receive distance 

vectors from 
neighbors

§ compute their 
new local  
distance vector

§ send their new 
local distance 
vector to 
neighbors

t=2



Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ b receives DVs 
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
§ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,2,∞} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞,∞, ∞} = ∞ 

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞,∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞,∞, ∞} = ∞ 



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs 
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ c receives DVs 
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 
Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1
Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2
Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 
Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 
Dc(h) = min{cc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute



Distance vector example: computation

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

§ e receives DVs 
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e 
at t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and 
may influence distance vector 
computations up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence 
distance vector computations up to 2
hops away, i.e., at b and now at a, e as well

t=2

c’s state at t=0 may influence distance 
vector computations up to 3 hops away, 
i.e., at d, f, h

t=3

c’s state at t=0 may influence distance 
vector computations up to 4 hops away, 
i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network: 

t=1 
t=2 

t=3 

t=4 



Distance vector: link cost changes

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost 
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV.  y’s least costs do not change, 
so y does not send a message to z. 

link cost changes:
• node detects local link cost change 
• updates routing info, recalculates local DV
• if DV changes, notify neighbors

x z
14

50

y
1



Distance vector: link cost changes

link cost changes:
§ node detects local link cost change 
§ “bad news travels slow” – count-to-infinity problem: x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So y 
computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z  computes “my new cost to x will be 
7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y  computes “my new cost to x will be 
8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z  computes “my new cost to x will be 
9 via y), notifies y of new cost of 9 to x.
…

§ see text for solutions.  Distributed algorithms are tricky!



Comparison of LS and DV algorithms
message complexity

LS: n routers, O(n2) messages sent  
DV: exchange between neighbors; 

convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) 

messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router 
malfunctions, or is compromised?

LS: 
• router can advertise incorrect link

cost
• each router computes only its own

table

DV:
• DV router can advertise incorrect 

path cost (“I have a really low-cost 
path to everywhere”): black-holing

• each router’s DV is used by others: 
error propagate thru network



Outline

• Introduction
• Routing protocols

• Intra-ISP routing: OSPF



Making routing scalable

our routing study thus far - idealized 
• all routers identical
• network “flat”

… not true in practice

scale: billions of destinations:
• can’t store all destinations in 

routing tables!
• routing table exchange would 

swamp links! 

administrative autonomy:
• Internet: a network of 

networks
• each network admin may want 

to control routing in its own 
network



Internet approach to scalable routing
aggregate routers into regions known as “autonomous systems” 
(AS) (a.k.a. “domains”)

intra-AS (aka “intra-domain”): routing 
among routers within same AS 
(“network”)
• all routers in AS must run same intra-

domain protocol
• routers in different AS can run 

different intra-domain routing 
protocols

• gateway router: at “edge” of its own 
AS, has link(s) to router(s) in other 
AS’es

inter-AS (aka “inter-domain”): 
routing among AS’es

• gateways perform inter-domain 
routing (as well as intra-domain 
routing)



Interconnected ASes

3b

1d

3a

1c
2a

AS3

AS1

AS21a

2c
2b

1b

3cintra-AS
routing

intra-AS
routing

intra-AS
routing

inter-AS routing

forwarding
table

forwarding table configured by intra-
and inter-AS routing algorithms

Intra-AS
Routing 

Inter-AS
Routing • intra-AS routing determine entries for 

destinations within AS
• inter-AS & intra-AS determine entries for 

external destinations



Inter-AS routing:  a role in intradomain forwarding

3b

1d

3a

1c
2a

AS3

AS1
AS21a

2c
2b

1b

3c

other
networks

other
networks

• suppose router in AS1 receives 
datagram destined outside of AS1:

AS1 inter-domain routing must:
1. learn which destinations reachable 

through AS2, which through AS3

2. propagate this reachability info to all 
routers in AS1

Ø router should forward packet 
to gateway router in AS1, but 
which one?



OSPF (Open Shortest Path First) routing

• “open”: publicly available
• classic link-state 

Øeach router floods OSPF link-state advertisements (directly 
over IP rather than using TCP/UDP) to all other routers in 
entire AS

Ømultiple link costs metrics possible: bandwidth, delay
Øeach router has full topology, uses Dijkstra’s algorithm to 

compute forwarding table
• security: all OSPF messages authenticated (to prevent 

malicious intrusion) 



Hierarchical OSPF
§ two-level hierarchy: local area, backbone.
• link-state advertisements flooded only in area, or backbone
• each node has detailed area topology; only knows direction to reach 

other destinations

area border routers: 
“summarize” distances  to 
destinations in own area, 
advertise in backbone

area 1
area 2

area 3

backbone

internal
routers

backbone router: 
runs OSPF limited 
to backbone

boundary router: 
connects to other ASes

local routers: 
• flood LS in area only
• compute routing within area
• forward packets to outside 

via area border router
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