
网络层: 数据平面
殷亚凤

智能软件与工程学院
苏州校区南雍楼东区225

yafeng@nju.edu.cn，https://yafengnju.github.io/

Outline

• Network Layer Functions

• Routers

• IP Packet Structure

Network Layer

• transport segment from sending to
receiving host

• on sending side encapsulates
segments into datagrams

• on receiving side, delivers segments
to transport layer

• network layer protocols in every
host, router

• router examines header fields in all
IP datagrams passing through it

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Two Key Network-layer Functions

analogy: Trip Planning
l forwarding: getting through

single city (e.g., entering and
leaving Suzhou Station)

l routing: planning the route
from Nanjing to Shanghai (e.g.,
Nanjing-Wuxi-Suzhou-Shanghai)

l OSI network-layer functions:
l Forwarding (Data plane)

Ø Move packets from input to
designated output determined by
switching (single node)

Ø Error handling, queuing and
scheduling

l Switching / Routing (Control plane)
Ø Determine route taken by packets

from source to destination
(multiple nodes)

Ø Shortest path from source to
destination

Ø Routing algorithms

Forwarding Functions

• Queuing and scheduling
– Host to Switch
– Switch to Host
– Switch to Switch

Switch Functions

• Routing determines the
forwarding table

Network layer: data plane, control plane

Data plane:
§ local, per-router function
§ determines how datagram

arriving on router input port
is forwarded to router
output port

Control plane
• network-wide logic
• determines how datagram is

routed among routers along end-
end path from source host to
destination host

1
23

0111

values in arriving
packet header

§ two control-plane approaches:
• traditional routing algorithms:

implemented in routers
• software-defined networking

(SDN): implemented in (remote)
servers

Per-router control plane
• Individual routing algorithm components in each and every

router interact in the control plane

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header

3

Software-Defined Networking (SDN) control plane

• Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving
packet header

Network Service Model

• Network service model
– Service model for “channel” transporting packets from sender to receiver
– Called Quality of Service from host perspective

Example services for individual packets
• Guaranteed delivery
• Guaranteed delivery with less than

40 msec delay

Example services for a flow of packets
l In-order packet delivery
l Guaranteed minimum bandwidth to

flow
l Restrictions on changes in inter-

packet spacing

Q: What service model for “channel” transporting datagrams from sender to
receiver?

Example：Network Service Model of IP

• Best effort

Reflections on best-effort service

• simplicity of mechanism has allowed Internet to be widely
deployed adopted

• sufficient provisioning of bandwidth allows performance of
real-time applications (e.g., interactive voice, video) to be “good
enough” for “most of the time”

• replicated, application-layer distributed services (datacenters,
content distribution networks) connecting close to clients’
networks, allow services to be provided from multiple locations

• congestion control of “elastic” services helps

It’s hard to argue with success of best-effort service model.

Outline

• Network Layer Functions

• Routers

• IP Packet Structure

Router definitions

• Router capacity = N x R

• N = Number of external router “ports”

• R = Speed (“line rate”) of a port

Networks and routers

AT&T BBN

NYU

UMICH

core

core

edge (ISP)

edge (enterprise)

home,
small business

Many types of routers

• Core
• R = 10/40/100/200/400 Gbps
• NR = O(100) Tbps (Aggregated)

• Edge
• R = 1/10/40/100 Gbps
• NR = O(100) Gbps

• Small business
• R = 1 Gbps
• NR < 10 Gbps

Inside a Router: Architecture Overview
Two key switch functions:
• Run routing algorithms/protocol
• Forwarding packets from incoming to outgoing link

forwarding tables computed,
pushed to input ports

Routing, Management
Control plane

(hardware&software)

Forwarding,
Data plane
(Hardware)

Input Port Functions

Physical layer:
Bit-level reception

Data link layer:
Error handling

Tasks
• Receive incoming packets (physical layer stuff)
• Update the IP header

Ø TTL, Checksum, Options and Fragment (maybe)
• Lookup the output port for the destination IP address
• Queuing: if packets arrive faster than forwarding rate into switch fabric

Input Port

• Challenge: speed!
• 100B packets @ 40Gbps à new packet every 20

nano secs!
• Typically implemented with specialized ASICs

(network processors)

Looking up the output port

• One entry for each address à 4 billion entries!

• For scalability, addresses are aggregated

Example

• Router with 4 ports
• Destination address range mapping

Ø 11 00 00 00 to 11 00 00 11: Port 1
Ø 11 00 01 00 to 11 00 01 11: Port 2
Ø 11 00 10 00 to 11 00 11 11: Port 3
Ø 11 01 00 00 to 11 01 11 11: Port 4

Example
• Router with 4 ports
• Destination address range mapping

Ø 11 00 00 00 to 11 00 00 11: Port 1
Ø 11 00 01 00 to 11 00 01 11: Port 2
Ø 11 00 10 00 to 11 00 11 11: Port 3
Ø 11 01 00 00 to 11 01 11 11: Port 4

Longest prefix matching rule: when looking for forwarding table
entry for given destination address, use longest address prefix
that matches destination address.

Longest prefix matching

110000** 110001** 11001*** 1101****

ISP Router
Port 1

Port 2 Port 3

Port 4

Finding match efficiently

• Testing each entry to find a match scales poorly
Ø On average: O(number of entries)

• Leverage tree structure of binary strings
Ø Set up tree-like data structure

Longest prefix matching

110000** 110001** 11001*** 1101****

ISP Router
Port 1

Port 2 Port 3

Port 4

Tree structure

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

000 è Port 1
001 è Port 2
01* è Port 3
1** è Port 4

Tree structure

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

000 è Port 1
001 è Port 2
01* è Port 3
1** è Port 4

Record port associated
with latest match, and
only override when it
matches another prefix
during walk down tree

Input Port

• Main challenge is processing speeds

• Tasks involved:
ØUpdate packet header (easy)
ØLPM lookup on destination address (harder)

• Mostly implemented with specialized hardware

Connecting inputs to outputs: Switching fabric
• Connecting inputs to outputs: Switching fabric
• Transfer packet from input buffer to appropriate output buffer
• Switching rate: rate at which packets can be transfer from

inputs to outputs
Ø often measured as multiple of input/output line rate
Ø N inputs: switching rate N times line rate desirable

• Three types of switching fabrics

memory

memory

bus crossbar

Switching via Memory
• First generation routers:
• Traditional computers with switching under direct control of CPU
• Packet copied to system’s memory
• Speed limited by memory bandwidth (2 bus crossings per

datagram)

input
port
(e.g.,

Ethernet)
memory

output
port
(e.g.,

Ethernet)

system bus

Switching via a Bus

• Datagram from input port memory
to output port memory via a
shared bus

• Bus contention: switching speed
limited by bus bandwidth

• 32 Gbps bus, Cisco 5600:
sufficient speed for access and
enterprise routers

bus

Switching via a Mesh

• Overcome bus bandwidth limitations

• Banyan networks, crossbar, other
interconnection nets initially developed
to connect processors in multiprocessor

• Advanced design: fragmenting datagram
into fixed length cells, switch cells
through the fabric.

• Cisco 12000: switches 60 Gbps through
the interconnection network

crossbar

Output Port Functions

Scheduler

flow 1

flow 2

flow n

Classifier

Buffer management

• Packet classification: map packets to flows
• Buffer management: decide when and which packet to drop
• Scheduler: decide when and which packet to transmit

– Chooses among queued packets for transmission
– Select packets to drop when buffer saturates

Packet classification

• Classify an IP packet based on a number of fields in
the packet header, e.g.,
Ø Source/destination IP address (32 bits)
Ø Source/destination TCP port number (16 bits)
Ø Type of service (TOS) byte (8 bits)
Ø Type of protocol (8 bits)

• In general fields are specified by range
Ø Classification requires a multi-dimensional range search!

Queuing: Input port queuing
• If switch fabric slower than input ports combined -> queueing

may occur at input queues
– queueing delay and loss due to input buffer overflow!

output port contention: only one red
datagram can be transferred. lower red
packet is blocked

switch
fabric

one packet time later: green packet
experiences HOL blocking

switch
fabric

• Head-of-the-Line (HOL) blocking: queued datagram at front of queue
prevents others in queue from moving forward

Queuing: Output port queuing

• Buffering required when datagrams
arrive from fabric faster than link
transmission rate. Drop policy: which
datagrams to drop if no free buffers?

• Scheduling discipline chooses
among queued datagrams for
transmission

Datagrams can be lost
due to congestion, lack
of buffers

Priority scheduling – who
gets best performance,
network neutrality

line
termination

link
layer

protocol
(send)

switch
fabric

(rate: NR)

datagram
buffer

queueing R

Queuing: Output port queuing

at t, packets more
from input to output

one packet time
later

switch
fabric

switch
fabric

• buffering when arrival rate via switch exceeds output line speed
• queueing (delay) and loss due to output port buffer overflow!

How much buffering?
• RFC 3439 rule of thumb: average buffering equal to “typical” RTT

(say 250 msec) times link capacity C
Ø e.g., C = 10 Gbps link: 2.5 Gbit buffer

• but too much buffering can increase delays (particularly in home routers)
Ø long RTTs: poor performance for real-time apps, sluggish TCP response
Ø recall delay-based congestion control: “keep bottleneck link just full

enough (busy) but no fuller”

RTT C.

N

• more recent recommendation: with N flows, buffering equal to

Buffer Management

buffer management:
• drop: which packet to add,

drop when buffers are full
Ø tail drop: drop arriving

packet
Ø priority: drop/remove on

priority basis

• marking: which packets to
mark to signal congestion
(ECN, RED)

line
termination

link
layer

protocol
(send)

switch
fabric

datagram
buffer

queueing
scheduling

R

queue
(waiting area)

packet
arrivals

packet
departures

link
(server)

Abstraction: queue

R

Network Layer: 4-
39

Scheduler

• One queue per “flow”

• Scheduler decides when and from which queue to
send a packet

• Goals of a scheduling algorithm
Ø Fast!
Ø Depends on the policy being implemented (fairness,

priority, etc.)

Simplest: FIFO router

• No classification
• Drop-tail buffer management: when buffer is full

drop the incoming packet
• First-In-First-Out (FIFO) Scheduling: schedule

packets in the same order they arrive

Scheduler

Buffer

Scheduling policies: priority

Priority scheduling:
• arriving traffic classified,

queued by class
Ø any header fields can be

used for classification

high priority queue

low priority queue

arrivals

classify departureslink

• send packet from highest
priority queue that has
buffered packets
Ø FCFS within priority class

1 3 2 4 5

arrivals

departures

packet
in

service

1 3 4
2

5

1 3 2 4 5

Scheduling policies: round robin

Round Robin (RR) scheduling:
• arriving traffic classified,

queued by class
Ø any header fields can be

used for classification

classify
arrivals

departureslink

R

• server cyclically, repeatedly
scans class queues, sending
one complete packet from
each class (if available) in turn

Scheduling policies: weighted fair queueing

Weighted Fair Queuing (WFQ):
• generalized Round Robin

classify
arrivals

departureslink

R

w1

w2

w3

wi

Sjwj

• minimum bandwidth guarantee
(per-traffic-class)

• each class, i, has weight, wi,
and gets weighted amount of
service in each cycle:

Outline

• Network Layer Functions

• Routers

• IP Packet Structure

IPv4 Header

Header Fields (1)
• Version (4 bits)

– Currently 4
– IPv6 – see later

• Internet header length (IHL) (4 bits)
– In 32 bit words (4 octets)
– Minimum fixed header (20 octets) + options

• Type of service (8 bits)
– Precedence: 3 bits, 8 levels defined
– Reliability: 1 bit, Normal or high
– Delay: 1 bit, Normal or low
– Throughput: 1 bit, Normal or high

Header Fields (2)
• Total length (16 bits)

– Of datagram, in octets
• Identification (16 bits)

– Sequence number
– Used with addresses and user protocol to identify datagram

uniquely
• Flags (3 bits)

– More flag, Don’t fragment
• Fragmentation offset (13 bits)
• Time to live (8 bits)
• Protocol (8 bits)

– Next higher layer to receive data field at destination

Header Fields (3)

• Header checksum (16 bits)
– Complement sum of all 16 bit words in header
– If not correct, router discards packets
– Reverified and recomputed at each router, set to 0 during calculation.

(Why?)

• Source address (32 bits)

• Destination address (32 bits)
• Options (variable £ 40 octets)

Data Field

• Carries user data from next layer up

• Multiple of 8 bits long (i.e. octet)

• Max length of datagram (header + data) 65,535 octets

实验1——截止日期：4月22日晚23:59

• 实验1：可靠通信

• 提交方式：https://selearning.nju.edu.cn/（教学支持系统）

• 命名：学号+姓名+实验*。

• 若提交遇到问题请及时发邮件或在下一次上课时反馈。

https://selearning.nju.edu.cn/

Lab 1: Reliable Communication

Overview
In the assignment you are going to build a reliable communication library in
Switchyard that will consist of 3 agents. At a high level, a blaster will send
data packets to a blastee through a middlebox. As you should all know by now,
IP only offers a best-effort service of delivering packets between hosts.
This means all sorts of bad things can happen to your packets once they are in
the network: they can get lost, arbitrarily delayed or duplicated. Your
communication library will provide additional delivery guarantees by
implementing some basic mechanisms at the blaster and blastee. Let's move
on to the details.

实验1——截止日期：4月22日晚23:59

Your Tasks
In the source directory for this exercise, you can find the starter files:
middlebox.py, blastee.py and blaster.py.
Your reliable communication library will implement the following features to
provide additional guarantees: 1. ACK mechanism on blastee for each
successfully received packet 2. A fixed-size sliding window on blaster 3.
Coarse timeouts on blaster to resend non-ACK'd packets
Further details will be discussed in each Task.
The sentences marked with ✅ are related to the content of your report.
Please pay attention.

Lab 1: Reliable Communication

实验1——截止日期：4月22日晚23:59

Task 1: Preparation
Initiate your project with our template. Start the task here

Task 2: Middlebox
Implement the features of middlebox. Start the task here

Task 3: Blastee
Implement the features of blastee. Start the task here

Task 4: Blaster
Implement the features of blaster. Start the task here

Task 5: Running your code
Make sure that your blaster, blastee and middlebox function correctly. Start the task here

Please carefully read the FAQ section, for more specific details regarding the implementations.

Lab 1: Reliable Communication

实验1——截止日期：4月22日晚23:59

https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/lab-6/preparation
https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/lab-6/middlebox
https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/lab-6/blastee
https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/lab-6/blaster
https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/lab-6/deploy
https://nju-cn-course.gitbook.io/nju-computer-network-lab-manual/lab-6/faq

提问

殷亚凤
智能软件与工程学院

苏州校区南雍楼东区225
yafeng@nju.edu.cn，https://yafengnju.github.io/

Q & A

