
运输层
殷亚凤

智能软件与工程学院
苏州校区南雍楼东区225

yafeng@nju.edu.cn，https://yafengnju.github.io/

Outline

• TCP flow control
• TCP congestion control
• Router assisted congestion control

TCP header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Recap: Sliding window

• Both sender and receiver maintain a window
• Left edge of window:

Ø Sender: beginning of unacknowledged data
Ø Receiver: beginning of expected data

ü First “hole” in received data
ü When sender gets ack, knows that receiver’s window has moved

• Right edge: Left edge + constant
Ø The constant is only limited by buffer size in the transport

layer

Fixed sliding window？

• Fixed sliding window
– Works well on reliable direct links

• Problem:
– Failure to receive ACK is taken as flow control indication
– The receiver can achieve flow control by stop sending

ACK, but the sender can not distinguish between lost
segment and flow control

Solution: Advertised Window

• Receiver advertises an “Advertised Window”
(RWND) to prevent sender from overflowing its
window
Ø Receiver indicates value of RWND in ACKs

Ø Sender ensures that the total number of bytes in flight
<= RWND

Sliding window at receiver

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Buffer size (B)

RWND = B - (LastByteReceived - LastByteRead)

Sliding window at sender

Sending process

First unACKed byte

Last byte
can send

TCP

Last byte written
≪ RWND

Last byte
sent

Sliding window with flow control

• Sender: window advances when new data ACK’d
• Receiver: window advances as receiving process

consumes data
• Receiver advertises to the sender where the receiver

window currently ends (“righthand edge”)
Ø Sender agrees not to exceed this amount

• UDP does not have flow control
Ø Data can be lost due to buffer overflow

Outline

• TCP flow control
• TCP congestion control
• Router assisted congestion control

Key design considerations

• How do we know the network is congested?
• Implicit and/or explicit signals from the network

• Who takes care of congestion?
• End hosts (may receive some help from the network)

• How do we handle congestion?
• Continuous adaptation

Three issues to consider

• Discovering the available (bottleneck) bandwidth
• Adjusting to variations in bandwidth
• Sharing bandwidth between flows

Abstract view

• Ignore internal structure of router and model it as
a single queue for a particular input-output pair

Sending Host Buffer in Router Receiving Host

A B

Discovering available bandwidth

100 Mbps

Sending Host Buffer in Router Receiving Host

A B

• Pick sending rate to match bottleneck bandwidth
Ø Without any a priori knowledge
Ø Could be gigabit link, could be a modem

Adjusting to variations in bandwidth

A BBW(t)

• Adjust rate to match instantaneous bandwidth
Ø Assuming you have rough idea of bandwidth

Multiple flows and sharing bandwidth

• Two Issues:
ØAdjust total sending rate to match bandwidth
ØAllocation of bandwidth between flows

A2 B2BW(t)

A1

A3 B3

B1

Reality

Congestion control is a resource allocation problem involving many
flows, many links, and complicated global dynamics

1Gbps

600Mbps

1Gbps

Possible approaches

(0) Send without care
nMany packet drops

Possible approaches

(0) Send without care
(1) Reservations
• Pre-arrange bandwidth allocations
• Requires negotiation before sending packets
• Low utilization

Possible approaches

(0) Send without care
(1) Reservations
(2) Pricing

nDon’t drop packets for the high-bidders
n Requires payment model

Possible approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

• Hosts infer level of congestion; adjust
• Network reports congestion level to hosts; hosts adjust
• Combinations of the above
• Simple to implement but suboptimal, messy dynamics

Possible approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

• Generality of dynamic adjustment has proven to
be very powerful
Ø Doesn’t presume business model, traffic characteristics,

application requirements
Ø But does assume good citizenship!

Two basic questions

• How does the sender detect congestion?
• How does the sender adjust its sending rate?

ØTo address three issues
üFinding available bottleneck bandwidth
üAdjusting to bandwidth variations
üSharing bandwidth

Detecting congestion

• Packet delays
Ø Tricky: noisy signal (delay often varies considerably)

• Routers tell end hosts when they’re congested

• Packet loss
Ø Fail-safe signal that TCP already has to detect
Ø Complication: non-congestive loss (e.g., checksum errors)

Not all losses are the same

• Duplicate ACKs: isolated loss
ØStill getting ACKs

• Timeout: much more serious
ØNot enough dupacks
ØMust have suffered several losses

• Will adjust rate differently for each case

Rate adjustment

• Basic structure
Ø Upon receipt of ACK (of new data): increase rate
Ø Upon detection of loss: decrease rate

• How we increase/decrease the rate depends on the
phase of congestion control we’re in:
Ø Discovering available bottleneck bandwidth

(Slow Start)
Ø Adjusting to bandwidth variations

(Congestion Avoidance: AIMD)

Bandwidth discovery with “Slow Start”

• Goal: estimate available bandwidth
Ø Start slow (for safety)
Ø Ramp up quickly (for efficiency)

• Consider
Ø RTT = 100ms, MSS=1000bytes
Ø Window size to fill 1Mbps of BW = 12.5 packets
Ø Window size to fill 1Gbps = 12,500 packets
Ø Either is possible!

Slow Start phase

• Sender starts at a slow rate, but increases
exponentially until first loss

• Start with a small congestion window
ØInitially, CWND = 1
ØSo, initial sending rate is MSS/RTT

• Double the CWND for each RTT with no loss

Slow Start in action

• For each RTT: double CWND
Ø i.e., for each ACK, CWND += 1

Linear increase per ACK(CWND+1) è
exponential increase per RTT (2*CWND)

Slow Start in action

• For each RTT: double CWND
• i.e., for each ACK, CWND += 1

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8

When does Slow Start stop?

• Slow Start gives an estimate of available bandwidth
Ø At some point, there will be loss

• Introduce a “slow start threshold” (ssthresh)
Ø Initialized to a large value

• If CWND > ssthresh, stop Slow Start

Adjusting to varying bandwidth

• CWND > ssthresh
Ø Stop rapid growth and focus on maintenance

• Now, want to track variations in this available
bandwidth, oscillating around its current value
Ø Repeated probing (rate increase) and backoff (decrease)

• TCP uses: “Additive Increase Multiplicative
Decrease” (AIMD)

AIMD
• Additive increase: when CWND> ssthresh

Ø For each ACK, CWND = CWND+ 1/CWND
Ø CWND is increased by one only if all segments in a CWND have been

acknowledged

• Multiplicative decrease

• On 3 duplicate ACKs (packet loss event)
Ø ssthresh = CWND/2
Ø CWND= ssthresh
Ø Enter Congestion Avoidance: cwnd increases by 1 (linearly instead of

exponentially) after each RTT

• On timeout event
Ø ssthresh = CWND/2
Ø CWND = 1
Ø Initiate Slow Start

Illustration of Window

ssthresh = cwnd/2

Timeout event: cwnd is set to 1
and then slow start

Leads to the TCP “Sawtooth”

Exponential
“slow start”

t

Window

AIMD saw tooth behavior:
probing for bandwidth

Packet loss event: cut window in half

Why AIMD?

• Recall the three issues
Ø Finding available bottleneck bandwidth
Ø Adjusting to bandwidth variations
Ø Sharing bandwidth

• Two goals for bandwidth sharing
Ø Efficiency: High utilization of link bandwidth
Ø Fairness: Each flow gets equal share

Why AIMD?

• Every RTT, we can do
Ø Multiplicative increase or decrease: CWND® a*CWND
Ø Additive increase or decrease: CWND® CWND + b

• Four alternatives:
Ø AIAD: gentle increase, gentle decrease
Ø AIMD: gentle increase, drastic decrease
Ø MIAD: drastic increase, gentle decrease
Ø MIMD: drastic increase and decrease

Simple model of congestion control

• Two users
Ø rates x1 and x2

• Congestion when
x1+x2 > 1

• Unused capacity
when x1+x2 < 1

• Fair when x1 =x2

User 1’s rate (x1)

U
se

r
2’

s
ra

te
 (x

2)

Fairness line
(x1 =x2)

Efficiency line
(x1+x2 = 1)

1

1

con
ges

ted
 à

ß
ine

ffi
cie

nt

Example

User 1: x1

U
se

r
2:

 x
2

Fairness
line

Efficiency
line

1

1

Inefficient: x1+x2=0.7

(0.2, 0.5)

Congested: x1+x2=1.2

(0.7, 0.5)

Efficient: x1+x2=1
Fair

(0.5, 0.5)

con
ges

ted
 à

ß
ine

ffi
cie

ntEfficient: x1+x2=1
Not fair

(0.7, 0.3)

AIMD

(bDx1+aI,
bDx2+aI)

• Increase: x+aI

• Decrease: x*bD

• Converges to
fairness

(x1,x2)

(bDx1,bDx2)

con
ges

ted
 à

ß
ine

ffi
cie

nt

Fairness
line

Efficiency
line

User 1: x1

U
se

r
2:

 x
2

Fast recovery

• Idea: Grant the sender temporary “credit” for each
dupACK so as to keep packets in flight

• If dupACKcount = 3
Ø ssthresh = CWND/2
Ø CWND = ssthresh + 3

• While in fast recovery
Ø CWND = CWND + 1 for each additional dupACK

• Exit fast recovery after receiving new ACK
Ø set CWND = ssthresh

Example

• Consider a TCP connection with:
Ø CWND=10 packets
Ø Last ACK was for packet # 101

ü i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight
Ø Packet 101 is dropped

Timeline: [101, 102, …, 110]✗
• ACK 101 (due to 102) cwnd=10 dup#1
• ACK 101 (due to 103) cwnd=10 dup#2
• ACK 101 (due to 104) cwnd=10 dup#3
• RETRANSMIT 101 ssthresh=5 cwnd= 8 (5+3)
• ACK 101 (due to 105) cwnd= 9 (no xmit)
• ACK 101 (due to 106) cwnd=10 (no xmit)
• ACK 101 (due to 107) cwnd=11 (xmit 111)
• ACK 101 (due to 108) cwnd=12 (xmit 112)
• ACK 101 (due to 109) cwnd=13 (xmit 113)
• ACK 101 (due to 110) cwnd=14 (xmit 114)
• ACK 111 (due to 101) cwnd = 5 (xmit 115) ç exiting fast recovery
• Packets 111-114 already in flight
• ACK 112 (due to 111) cwnd = 5 + 1/5 ß back in cong. avoidance

TCP state machine

Slow
Start

Cong.
Avoid.

Fast
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new
ACKdupACK

dupACK

Timeouts ➔ Slow Start

Slow
Start

Cong.
Avoid.

Fast
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new
ACKdupACK

dupACK

dupACKs ➔ Fast Recovery

Slow
Start

Cong.
Avoid.

Fast
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new
ACKdupACK

dupACK

New ACK changes state ONLY from Fast Recovery

Slow
Start

Cong.
Avoid.

Fast
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new
ACKdupACK

dupACK

TCP state machine

Slow
Start

Cong.
Avoid.

Fast
Recovery

CWND > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout
new
ACKdupACK

dupACK

Timeout and Dup-ack

TCP flavors

• TCP-Tahoe
Ø CWND =1 on 3 dupACKs

• TCP-Reno
Ø CWND =1 on timeout
Ø CWND = CWND/2 on 3 dupACKs

• TCP-newReno
Ø TCP-Reno + improved fast recovery

• TCP-SACK
Ø Incorporates selective acknowledgements

Our default
assumption

Outline

• TCP flow control
• TCP congestion control
• Router assisted congestion control

Recap: TCP problems

• Misled by non-congestion losses

• Fills up queues leading to high delays
• Short flows complete before discovering available capacity

• AIMD impractical for high speed links
• Saw tooth discovery too choppy for some apps

• Unfair under heterogeneous RTTs

• Tight coupling with reliability mechanisms
• End hosts can cheat

Routers tell endpoints
if they’re congested

Routers tell
endpoints what
rate to send at

Routers enforce
fair sharing

Could fix many of these with some help from routers!

Warning Bit

Explicit Congestion Notification (ECN)

• Single bit in packet header; set by congested routers
Ø If data packet has bit set, then ACK has ECN bit set

• Many options for when routers set the bit
Ø Tradeoff between (link) utilization and (packet) delay

• Congestion semantics can be exactly like that of drop
Ø i.e., end-host reacts as though it saw a drop

课程习题（作业）——截止日期：4月8日晚23:59

• 课本187-195页：第P27、P40、P48、P52、P54题

• 提交方式：https://selearning.nju.edu.cn/（教学支持系统）

• 命名：学号+姓名+第*章。

• 若提交遇到问题请及时发邮件或在下一次上课时反馈。

https://selearning.nju.edu.cn/

课程习题（作业）——截止日期：4月8日晚23:59

课程习题（作业）——截止日期：4月8日晚23:59

3-61

3-61

课程习题（作业）——截止日期：4月8日晚23:59

P48

课程习题（作业）——截止日期：4月8日晚23:59

P52

P54

提问

殷亚凤
智能软件与工程学院

苏州校区南雍楼东区225
yafeng@nju.edu.cn，https://yafengnju.github.io/

Q & A

