
运输层
殷亚凤

智能软件与工程学院
苏州校区南雍楼东区225

yafeng@nju.edu.cn，https://yafengnju.github.io/

Outline

• UDP: User Datagram Protocol
• TCP: Transmission Control Protocol
• TCP Connection Setup
• TCP Connection Teardown

UDP: User Datagram Protocol

• Lightweight communication between processes
Ø Avoid overhead and delays of order & reliability

• UDP described in RFC 768 – (1980!)
Ø Destination IP address and port to support demultiplexing

UDP (cont’d)

• “Best effort” service, UDP segments may be:
– lost
– delivered out-of-order to app

• Connectionless:
– no handshaking between UDP sender, receiver
– each UDP segment handled independently of others

• UDP use:
– streaming multimedia apps (loss tolerant, rate sensitive)
– DNS
– SNMP

Why is there a UDP?

• no connection establishment (which can add delay)

• simple: no connection state at sender, receiver

• small header size

• no congestion control: UDP can blast away as fast
as desired

UDP Segment Format

source port # dest port #

32 bits

Application
data

(message)

length checksum
Length in octets,
including Header
and Data Header + Data +

Pseudo-header;
Or set to 0 if no check

UDP checksum

sender:
• treat segment contents,

including header fields, as
sequence of 16-bit integers

• checksum: addition of
segment contents, and its
complement sum

• sender puts checksum value
into UDP checksum field

receiver:
• compute checksum of received

segment

• check if the sum of computed
checksum and checksum field
value equals 1111….1111:

– NO - error detected

– YES - no error detected. But
maybe errors nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Internet checksum: example

example: add two 16-bit integers
1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Note: when adding numbers, a carryout from the
most significant bit needs to be added to the result

Outline

• UDP: User Datagram Protocol
• TCP: Transmission Control Protocol
• TCP Connection Setup
• TCP Connection Teardown

The TCP Abstraction

• TCP delivers a reliable, in-order, byte stream
• Reliable: TCP resends lost packets (recursively)

Ø Until it gives up and shuts down connection

• In-order: TCP only hands consecutive chunks of data
to application

• Byte stream: TCP assumes there is an incoming stream
of data, and attempts to deliver it to app

What does TCP use from what we’ve seen so far?

• Most of what we’ve seen
Ø Checksums
Ø Sequence numbers are byte offsets
Ø Sender and receiver maintain a sliding window
Ø Receiver sends cumulative acknowledgements (like GBN)

ü Sender maintains a single retransmission timer
Ø Receivers buffer out-of-sequence packets (like SR)

• Few more: fast retransmit, timeout estimation
algorithms etc.

TCP header

Source port Destination port

Sequence number
Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to Mux
and Demux

TCP header

Source port Destination port

Sequence number
Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed
over pseudo-header
and data

TCP header

Source port Destination port

Sequence number
Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Number of 4-
byte words in
the header;
5: No options

What does TCP do?

• Most of what we’ve seen
ØChecksum
ØSequence numbers are byte offsets

TCP header

Source port Destination port

Sequence number
Acknowledgment

Advertised windowHdrLe
n

Flags0

Checksum Urgent pointer

Options (variable)

Data

Byte offsets
(NOT packet id),
because TCP is a
byte stream

Sequence numbers

Host A

ISN (Initial Sequence Number)

Sequence number
= 1st byte in segment =

ISN + k

k bytes

Sequence numbers

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ACK sequence number
= next expected byte
= seqno + length(data)

Host A

ISN (Initial Sequence Number)

Sequence number
= 1st byte in segment =

ISN + k

k

TCP segment

• IP packet
Ø No bigger than Maximum Transmission Unit (MTU)
Ø E.g., up to 1500 bytes with Ethernet

• TCP packet
Ø IP packet with a TCP header and data inside
Ø TCP header ³ 20 bytes long

• TCP segment
Ø No more than Maximum Segment Size (MSS) bytes
Ø E.g., up to 1460 consecutive bytes from the stream
Ø MSS = MTU – (IP header) – (TCP header)

IP Hdr
IP Data

TCP HdrTCP Data (segment)

What does TCP do?

• Most of what we’ve seen
Ø Checksum
Ø Sequence numbers are byte offsets
Ø Receiver sends cumulative acknowledgements (like GBN)

ACKs and sequence numbers

• Sender sends packet
Ø Data starts with sequence number X
Ø Packet contains B bytes [X, X+1, X+2, ….X+B-1]

• Upon receipt of packet, receiver sends an ACK
Ø If all data prior to X already received:

ü ACK acknowledges X+B (because that is next expected byte)
Ø If highest in-order byte received is Y s.t. (Y+1) < X

ü ACK acknowledges Y+1
ü Even if this has been ACKed before

Typical operation

• Sender: seqno=X, length=B
• Receiver: ACK=X+B
• Sender: seqno=X+B, length=B
• Receiver: ACK=X+2B
• Sender: seqno=X+2B, length=B

• Seqno of next packet is same as last ACK field

TCP header

Source port Destination port

Sequence number
Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment
gives seqno just
beyond highest
seqno received in
order

What does TCP do?

• Most of what we’ve seen
• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers can buffer out-of-sequence packets (like SR)

What does TCP introduce?

• Most of what we’ve seen
• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers can buffer out-of-sequence packets (like SR)

• Introduces fast retransmit: duplicate ACKs trigger
early retransmission

Loss with cumulative ACKs

• Duplicate ACKs are a sign of an isolated loss
Ø The lack of ACK progress means 500 hasn’t been delivered
Ø Stream of ACKs means some packets are being delivered

• Trigger retransmission upon receiving k duplicate
ACKs
Ø TCP uses k=3
Ø Faster than waiting for timeout

Loss with cumulative ACKs

• Two choices after resending:
Ø Send missing packet and move sliding window by the

number of dup ACKs
ü Speeds up transmission, but might be wrong

Ø Send missing packet, and wait for ACK to move sliding
window
ü Is slowed down by single dropped packets

• Which should TCP do?

What does TCP introduce?

• Most of what we’ve seen
• Checksum
• Sequence numbers are byte offsets
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers buffer out-of-sequence packets (like SR)

• Introduces fast retransmit: duplicate ACKs trigger
early retransmission

• Sender maintains a single retransmission timer (like
GBN) and retransmits on timeout

Retransmission timeout

• If the sender hasn’t received an ACK by timeout,
retransmit the first packet in the window

• How do we pick a timeout value?

Timing illustration

1

1

Timeout too long à inefficient

1

1

Timeout too short à
duplicate packets

RTT

Timeout

Timeout
RTT

Retransmission timeout

• If the sender hasn’t received an ACK by timeout,
retransmit the first packet in the window

• How to set timeout?
• Too long: connection has low throughput
• Too short: retransmit packet that was just delayed

• Solution: make timeout proportional to RTT
• But how do we measure RTT?

RTT estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T (

mi
llis

ec
on

ds
)

SampleRTT Estimated RTT

• Exponential weighted average of RTT samples
EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

Outline

• UDP: User Datagram Protocol
• TCP: Transmission Control Protocol
• TCP Connection Setup
• TCP Connection Teardown

• TCP header field for connection establishment and
teardown

Connection: three-way handshake

• Three-way handshake to
establish connection
Ø Host A sends a SYN (open;
“synchronize sequence numbers”)
to host B

Ø Host B returns a SYN
acknowledgment (SYN ACK)

Ø Host A sends an ACK to
acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

三方握手：确认对方的SYN和序号

TCP header

Source port Destination port

Sequence number
Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags:
SYN
ACK
FIN
RST
PSH
URG

Step 1: A’s initial SYN packet

A’s port B’s port

A’s Initial Sequence Number
N/A

Advertised window5 SYN0

Checksum Urgent pointer

A tells B to open
a connection

Step 1: B’s SYN-ACK packet

B’s port A’s port

B’s Initial Sequence Number
ACK=A’s ISN+1

Advertised window5 SYN|ACK0

Checksum Urgent pointer

B tells it accepts
and is ready to
accept next
packet

Step 1: A’s ACK to SYN-ACK

A’s port B’s port

A’s Initial Sequence Number

Advertised window5 ACK0

Checksum Urgent pointer

A tells B to open
a connection ACK=B’s ISN+1

TCP’s 3-Way handshaking

Client (initiator) Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect() listen()

What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
Ø Packet dropped by the network or server is busy

• Eventually, no SYN-ACK arrives
Ø Sender retransmits the SYN on timeout

• How should the TCP sender set the timer?
Ø Sender has no idea how far away the receiver is
Ø Hard to guess a reasonable length of time to wait
Ø SHOULD (RFCs 1122 & 2988) use default of 3 seconds

ü Some implementations instead use 6 seconds

Three-Way Handshake: Examples

Outline

• UDP: User Datagram Protocol
• TCP: Transmission Control Protocol
• TCP Connection Setup
• TCP Connection Teardown

Normal termination, one side at a time

• Finish (FIN) to close and receive remaining bytes
Ø FIN occupies one byte in the sequence space

• Other host acks the byte to confirm
• Closes A’s side of the connection, but not B’s

Ø Until B likewise sends a FIN
Ø Which A then acks

SY
N

SYN
 A

CK

AC
K

Da
ta

FI
N

A
CK

A
CK

time
A

B

FIN A
CK

TIME_WAIT:

Avoid reincarnation
B will retransmit FIN
if ACK is lost

Connection
now half-closed

Connection
now closed

Normal termination, both together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SYN
 A

CK

AC
K

Da
ta

FI
N

FIN
 + A

CK

A
CK

time
A

B

A
CK

Connection
now closed

TIME_WAIT:
Avoid reincarnation
Can retransmit
FIN ACK if ACK lost

Abrupt termination

• A sends a RESET (RST) to B
Ø E.g., because application process on A crashed

• That’s it
Ø B does not ack the RST
Ø Thus, RST is not delivered reliably, and any data in flight is lost
Ø But: if B sends anything more, will elicit another RST

SY
N

SYN
 A

CK

AC
K

Da
ta

RS
TA

CK

time
A

B

Data RS
T

TCP client lifecycle

CLOSED

SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

Send SYN

Receive SYN-ACK
Send ACK

Send FINReceive ACK
Send Nothing

Receive FIN
Send ACK

Wait 30 sec

TCP server lifecycle

CLOSED

LISTEN

SYN_RCVD

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK

Create a listen socket

Receive SYN
Send SYN-ACK

Receive ACK
Send Nothing

Receive FIN
Send ACK

Send FIN

Receive ACK
Send Nothing

课程习题（作业）——截止日期：4月1日晚23:59

• 课本187-195页：第R5、R8、R14、P1、P3、P5题

• 提交方式：https://selearning.nju.edu.cn/（教学支持系统）

• 命名：学号+姓名+第*章。

• 若提交遇到问题请及时发邮件或在下一次上课时反馈。

https://selearning.nju.edu.cn/

课程习题（作业）——截止日期：4月1日晚23:59

课程习题（作业）——截止日期：4月1日晚23:59

提问

殷亚凤
智能软件与工程学院

苏州校区南雍楼东区225
yafeng@nju.edu.cn，https://yafengnju.github.io/

Q & A

