R FES

NANJING UNIVERSITY

ERIVR|
BRI S TEFR
TN X FEgEERIX 225
yafeng@nju.edu.cn , https://yafengnju.github.io/

* Transport layer basics
* Design of reliable transport
* Designing a reliable transport protocol

application

transport

« Provide logical communication between
app processes running on different hosts

network
data link
physical

« Transport protocols run in end systems
network

— Send side: breaks app messages into data link
segments, passes to network layer

— Receive side: reassembles segments
into messages, passes to app layer

* More than one transport protocol
available to apps

— Internet: TCP and UDP

application

transport

%

NANJING UNIVERSITY

£ .,‘
Vo S

Why a transport layer?

 IP packets are addressed to a host but end-to-end
communication is between application processes at hosts

* Need a way to decide which packets go to which applications
(multiplexing/demultiplexing)

- IP provides a weak service model (best-effort)

* Packets can be corrupted, delayed, dropped, reordered,
duplicated

* No guidance on how much traffic to send and when
» Dealing with this is tedious for application developers

——. Multiplexing & demultiplexing

RS

* Multiplexing (Mux)

« Gather and combining data chunks at the source
host from different applications and delivering
to the network layer

* Demultiplexing (Demux)

« Delivering correct data to corresponding sockets
from multiplexed a stream

A P4 J/

4l vz

(4] P)
NANJING UNIVERSITY

=, Role of the transport layer

« Communication between processes
» Mux and demux from/to application processes
» Implemented using ports

~i= Role of the transport layer

* Provide common end-to-end services for app
layer [optional]
* Reliable, in-order data delivery
« Well-paced data delivery

 Too fast may overwhelm the network
* Too slow is not efficient

A P4 J,

4l vz

Q=5 DY/ A S
NANJING UNIVERSITY

=, Role of the transport layer

« TCP and UDP are the common transport
protocols

« Also SCTP, MPTCP, SST, RDP, DCCP, ...

=, Role of the transport layer

« UDP is a minimalist transport protocol
» Only provides mux/demux capabilities

—H—. Role of the transport layer

e
By, "?3__4. FNPOR

« TCP offers areliable, in-order, byte stream abstraction

« With congestion control, but w/o performance guarantees (delay,
b/w, etc.)

A P4 J'

4l vz

9 PEAY
NANJING UNIVERSITY

——. Applications and sockets

,,‘
Vo St

« Socket: software abstraction for an application
process to exchange network messages with the
(transport layer in the) operating system

* Transport layer addressing
e <HostIP, Port>, called a socket

« Two important types of sockets
« UDP socket: TYPE is SOCK_DGRAM
 TCP socket: TYPE is SOCK_STREAM

Ports

Lnp 4

Vo Sl

 16-bit numbers that help distinguishing apps
* Packets carry src/dst port no. in transport header
« Well-known (0-1023) and ephemeral ports

« OS stores mapping between sockets and ports

* Port in packets and sockets in OS

« For UDP ports (SOCK_DGRAM)
« OS stores (local port, local IP address) €-> socket

« For TCP ports (SOCK_STREAM)
« OS stores (local port, local IP, remote port, remote IP)

& socket

T ~
o,
.33?’3? FNPOR

., Multiplexing/demultiplexing

—— multiplexing at sender: —

handle data from multiple
sockets, add transport header

(later used for demultiplexing)

— demultiplexing at receiver: —

use header info to deliver
received segments to correct
socket

application

application
tr

transport net

network - link

link phyS cq

)/ . 1l
physical

application

1.

[« s | socket

transp

O

networ
link
physicq

._.3«

Lnp 4

I Sie LT

How demultiplexing works

host receives IP datagrams
» each datagram has source IP
address, destination IP address

> each datagram carries one
transport-layer segment

> each segment has source,
destination port number

host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

source port #| dest port #

other header fields

application
data
(payload)

TCP/UDP segment format x #

—Ji—, Connectionless demultiplexing

T &l
» recall: created socket has host- - recall: when creating datagram
local port #: to send into UDP socket, must
DatagramSocket mySocketl Sp@CIfy

> destination IP address

= new DatagramSocket (12534) ; > destination port #
estinarion por

« When host receives UDP IP datagrams with same
segment: dest. port #, but different
> checks destination port # mmmp source IP addresses
in segment and/or source port

numbers will be directed
to same socket at dest.

A P4 J/

4l vz

g/ TS
NANJING UNIVERS

>
SITY

> directs UDP segment to
socket with that port #

—FH_. Connectionless demux: example

ie { Ry '_
.;3:433_‘ e B

DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new serverSocket = new mySocketl = new
DatagramSocket DatagramSocket l?g.s?g;:amSocket
(9157) ; (6428) ; ;

application

application
franspop transpdr
networtk networ
link link
q physical physica \V :
source port: 6428 source port: -
) dest port: 9157 dest port: ?
> le ¥
g - 00]
source port: 9157 source port: ? .
dest port: 6428 dest port: ? ;ﬁ J'\ %

NANJING UNIVERSITY

‘-3 2

- Connection-oriented demux

e
Y, "?3__4. FENPOLR

TCP socket identified by 4- + server host may support many

tuple: simultaneous TCP sockets:
> source IP address > each socket identified by its
> source port number own 4-tuple

> dest IP address

« web servers have different
> dest port number

sockets for each connecting
client
» non-persistent HTTP will

have different socket for
each request

demux: receiver uses all
four values to direct
segment to appropriate
socket

A P4 J,

4l vz

Q25 oh N)
NANJING UNIVERSITY

~—, Connection-oriented demux: example

application

application
' [y sl In
transpprt neT\l/or‘ll transport
networtk E lin ni‘rwor‘k
link . lipk
phygicdl :
/ ‘{ physicl Server: physical | g
ddress
«*+] B
host: IP source IP,port: B,80 host: IP
ddress A dest IP port: A 9157 source IP,port: C,5775 address
aadre D> dest IPport: B.80 C
source IP port: A9157
dest IP., port: B.AQ. —%ﬂwﬁr‘
dest IP port: B.80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

FAF

NANJING UNIVERSITY

—it—, Connection-oriented demux: exam

ple

threaded server

application
P>

trpnsport

ngtwork

ligk

host: IP

address
A

source IP port: B,80
dest IP port: A 9157

source IP port: A,9157
dest IP, port: B,80

. \
TP -

Beress
r_«*T host: IP
source IP,port: C,5775

address
dest IP port: B,80

C
source !! port: CO157

dest IP,port: B 80

FAF

NANJING UNIVERSITY

« Transport layer basics
» Design of reliable transport
* Designing a reliable transport protocol

—H_ Reliable transport

. In a perfect world, reliable transport is easy

@Sender @Receiver
— Send packets — Wait for packets

=Ty P4 J/

& ol |¢

L4/ A N
NANJING UNIVERS

>
SITY

=, Reliable transport

* All the bad things best-effort can do
> A packet is corrupted (bit errors)
> A packet is lost (why?)
> A packet is delayed (why?)
» Packets are reordered (why?)
> A packet is duplicated (why?)

—H_ Reliable transport

al 4.3_ P, A.A,;;'a;

* Mechanisms for coping with bad events

Checksums: to detect corruption

ACKs: receiver tells sender that it received packet
NACK: receiver tells sender it did not receive packet
Sequence humbers: a way to identify packets
Retransmissions: sender resends packets

Timeouts: a way of deciding when to resend packets

Forward error correction: a way to mask errors without
retransmission

V VYV V YV V V

A\

Network encoding: an efficient way to repair errors

Dealing with packet corruption

* the question: how to recover from errors:

“’43

< o ,_
e i %) BT

« acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK
* negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors
« sender retransmits pkt on receipt of NAK

1 J

ack M
2 |e=

hack —=
5> =

—
Sender Time Receiver
FEY

1 P(1)
_ack(l) M
—
1 P(U Packet
ack 1) #1 or #2?
2 = P(2)
’ —
Sender Receiver

Time

Ao
A K
; AT B

Dealing with packet loss

Timer-driven loss detection

Set timer when packet is sent; retransmit on timeout

1
P(1)
ey
Timeout
A\ 4 1 P(
—]
ack(1)

= P(2)

—
Sender Receiver

Time

= Dealing with packet loss (of ack)

1
P(1)
—
Timeout <+
1
P(1)
ack(1) —
) —
P(2)
—
Sender Receiver

Time

e 7 J,

& 5] l”

2/ A I
NANJING UNIVER(

1)
SITY

: P(1)

Timeout
Y 1 P(1) ack(l)
B H: — e —
ack() E_{Z;‘: 1 dUp“CCl're!
< N —
Sender Receiver

Time

. COmPOnenTS Of a SO'U'hon

« Checksums (to detect bit errors)

« Timers (to detect loss)

« Acknowledgements (positive or negative)
Sequence numbers (to deal with duplicates)

« Transport layer basics
* Design of reliable transport
» Designing a reliable transport protocol

A Solution: "Stop and Wait"

@Sender @Receiver
o Send packet(I); (re)set o Wait for packet
timer, o If packet is OK, send
o If(ACK) ACK
o I++ repeat o Else, send NACK
o If (NACKor TIMEOUT) o Repeat
e repeat

« A correct reliable transport protocol, but an
extremely inefficient one

= Stop & Wait is inefficient

sender receiver

first packet bit transmitted, t = 0 —fxc-------cocomoomoo-
last packet bit transmitted, t=L/R

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next]
packet, t= RTT+L/R [~~~
T

L: packet size
R: bandwidth of the link If (L/R« RTT) then
RTT = 2*PropDelay: roundtrip time Throughput ~ DATA/RTT

G EES

NANJING UNIVERSITY

VRSt

Orders of magnitude

e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packef:

s . L _ 8000bits
fras = R 109bits/sec

« if RTT=30 msec,

= 8 microsecs

* U ¢ondert Utilization - fraction of time sender busy sending

U B L/R B .008

sender T T R~ o005~ 0-00027

« 33kB/sec throughput over 1 Gbps link!
 network protocol limits use of physical resources!

5 Pipelined protocols

__.‘. JLM“R

pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
— range of sequence numbers must be increased
— buffering at sender and/or receiver

data pqcke’r—» data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

S

—, Pipelining: increased utilization

X ".‘“i""" g G
VR e S

sender receiver

first packet bit transmitted, + = 0
last bit transmitted, t =L /R

|

RTT

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2" packet arrives, send ACK
last bit of 3 packet arrives, send ACK

ACK arrives, send nex‘rl

| 3-packet pipelining increases

........ utilization by a factor of 3!

.. ! /

3L/R 0024
u _ _
sender™ rr 1~ docos ~ 0-00087

Ghikd

NANJING UNIVERSITY

~=, 1hree design decisions

« Which packets can sender send?
» Sliding window
« How does receiver ack packets?
» Cumulative
> Selective
« Which packets does sender resend?

» Go-Back N (GBN)
» Selective Repeat (SR)

—H_ Sliding window

Vo St o

« Window = set of adjacent sequence numbers
> The size of the set is the window size; assume window size is n

« General idea: send up to n packets at a time
» Sender can send packets in its window
> Receiver can accept packets in its window

of acceptable packets "slides” on successful
reception/acknowledgement

contains all packets that might still be in transit

« Sliding window often called "packets in flight" _ Iy

J_‘_

o S S

Sliding window

« Let A be the last ack'd packet of sender without gap; then
window of sender = {A+l, A+2, ..., A+n}
n I Already ACK'd

A
|| sent but not ACKd

ERRDONRCONO000000 T comor be so

sequence number >

« Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,..., B+n}

n I Received and ACK'd
A Acceptable but not

[|
yet received
IIIIIiDDIIDDIDDDDD [] Cannot be received.
(g: &Jlff.Ule\’:R:%

. Throughput of sliding window

3
S e sy
.»-’43?31_-;.; FRPELTR

« If window size is n, then throughput is roughly
> MIN(h©*DATA/RTT, Link Bandwidth)

« Compare to Stop and Wait: Data/RTT

* What happens when n gets too large?

- Acknowledgements w/ sliding window

¥R T

* Two common options

»Cumulative ACKs: ACK carries next in-
order sequence number that the receiver
expects

. Cumulative acknowledgements

e
At receiver
n I Received and ACK'd
B { \ D Acceptable but not
yet received
IIIIIﬁDDDDDDDDDDDD [] Cannot be received
After receiving B+1, B+2
Brew= B+2 n
|
T 1L AR

Receiver sends ACK(B+3) = ACK(B,,.,,+1)

. Cumulative acknowledgements (cont'd)

P S R

At receiver
n I Received and ACK'd

D Acceptable but not
yet received

IIIIIiDDDDDDDDDDDD [] Cannot be received

After receiving B+4, B+5

n

TLLLLiaaE | i
Receiver sends ACK(B+1)

ey P4 J'

a4 2 7

9 A
NANJING UNIVERSITY

~=, Acknowledgements w/ sliding window

* Two common options

» Cumulative ACKs: ACK carries next in-order sequence
humber the receiver expects

» Selective ACKs: ACK individually acknowledges correctly
received packets

 Selective ACKs offer more precise information but
require more complicated book-keeping

—H_. Sliding window protocols

SN
al *.2_.4. FRPOLTR

 Resending packets: two canonical approaches
» Go-Back-N

> Selective Repeat

* Many variants that differ in implementation
details

A P4 J/

4l vz

Q5 s N)
NANJING UNIVERSITY

——, Go-Back-N (GBN)

¥R T

Sender transmits up to n unacknowledged packets

Receiver only accepts packets in order
» Discards out-of-order packets (i.e., packets other than B+1)

Receiver uses cumulative acknowledgements
> i.e., sequence# in ACK = next expected in-order sequence#

Sender sets timer for 1st outstanding ack (A+1)
If timeout, retransmit A+1l, .. , A+n

. Sliding window with GBN

- Laps

b3
e oo - o
= -43?31_‘- e i X B

« Let A be the last ack'd packet of sender without gap:
then window of sender = {A+1, A+2, ..., A+n}

A ? B Already AcKd
%{ | D Sent but not ACK'd
aEi00000000000000 7 et b oo

sequence number >

« Let B be the last received packet without gap by
receiver, then window of receiver = {B+1,..., B+n}

B T I Received and ACK'd
(‘ [] Acceptable but not
llllliDDDDDDDDDDDD yet received

Cannot be receive
1 F4E A 4

>
SITY

T
2 :41:’3.2_?' DA O

. GBN example w/o errors

Sender Window

Window size = 3 packets

Receiver Window

—

1 1
0 b
{1,2,3} 3
{(2,3,4} 4
{3,4,5} b5
{4,5,6} 6

Sender

—

Time

Receiver

A P4 J/

& ol |¢

42 E oh N
NANJING UNIVERS

>
SITY

——. GBN example with errors

Vo St o

Sender Window Window size = 3 packets Receiver Window

OOl :h Wi

Timeout sgj X
Packet 4 Discard
v ::l Discard
Sender Receiver

Time

B Selective Repeat (SR)

e 3:”33.-,.. i A;u‘ée'f‘

+ Sender: transmit up to n unacknowledged packets

« Assume packet k is lost, k+1 is not
> Receiver: indicates packet k+1 correctly received
» Sender: retransmit only packet k on timeout

 Efficient in retransmissions but complex book-keeping
> Need a timer per packet

.—5 :

. SR example with errors

I Swe BN

Sender Window

Window size = 3 packets

Receiver Window

B 1
{1,2} 2
{1,2,3} 3

{2, 3,4

{3.4,5} [5 §\>X

Timeout |6

Packet 4

=5 :’.<:: Buffered
— Buffered

{4,5,6} 4 p—— —
{4,5, 6}

:ﬂ

{(7,8,9} 7

Receiver

—H_. GBN vs. Selective Repeat

SN
al *.3__4. FRPOLTR

 When would GBN be better?

« When error rate is low; wastes bandwidth
otherwise

« When would SR be better?

* When error rate is high; otherwise, too complex

A P4 J,

4l vz

Q5 s N)
NANJING UNIVERSITY

Q&A

ERIVR|
BRI S TEFR
TN X FEgEERIX 225
yafeng@nju.edu.cn , https://yafengnju.github.io/

