
应用层
殷亚凤

智能软件与工程学院
苏州校区南雍楼东区225

yafeng@nju.edu.cn，https://yafengnju.github.io/

Internet Applications

• Internet Applications Overview
• WWW and HTTP
• Electronic Mail
• Domain Name Service (DNS)
• File Transfer Protocol (FTP)
• Content Distribution Networks (CDNs)

Internet Applications Overview
Application: communicating, distributed

processes
• e.g., Email, Web, P2P file sharing, instant

messaging
• Running in end systems (hosts)
• Exchange messages to implement application

Application-layer protocols
• One “piece” (agent) of an app
• Define messages exchanged by apps and

actions taken
• Use communication services provided by

lower layer protocols (TCP, UDP, RTP)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Architectures

possible structure of applications:
• client-server (CS)
• peer-to-peer (P2P)

Client-Server Paradigm
Client:
• Start as required
• Initiates contact with server, “speaks first”

• Host may have dynamic IP addresses
• e.g. Web: client implemented in browser;

Email: in mail reader

Server:
• Run as daemon (always-on)
• Provides requested service to Client

• Host has permanent IP address
• e.g. Web server sends requested Web page,

mail server delivers Email

request

reply

Peer-to-Peer Paradigm

• No always-on server

• Arbitrary end systems directly communicate

• peers request service from other peers, provide
service in return to other peers
– self scalability – new peers bring new service

capacity, as well as new service demands

• Peers are intermittently connected and change
IP addresses
– Highly scalable but difficult to manage

• Examples: Gnutella, BitTorrent, Skype

peer-peer

Client-Server and P2P

Skype
• Voice-over-IP P2P

application

• Centralized server:
finding address of remote
party

• Direct client-client
connection

Instant messaging
• Chatting between two users is P2P

• Centralized service: user
presence detection/location

• User registers its IP address
with central server when it comes
online

• User contacts central server to
find IP addresses of parties

Jargons of Internet Applications

• Process: program running within a host
– Within same host, 2 processes communicate using inter-process

communication (defined by OS)
– Processes running in different hosts communicate with an app-layer

protocol

• User agent: interfaces with app “above” and network “below”
– Implements user interface & app-layer protocol, e.g.
– Web: browser, web server
– Email: mail reader, mail server
– Streaming audio/video: media player, media server

Typical Applications

• Web and HTTP
• Email
• DNS
• FTP
• CDN

Internet Applications

• Internet Applications Overview
• WWW and HTTP
• Electronic Mail
• Domain Name Service (DNS)
• File Transfer Protocol (FTP)
• Content Distribution Networks (CDNs)

Web components

• Infrastructure:
Ø Clients
Ø Servers (DNS, CDN, Datacenters)

• Content:
Ø URL: naming content
Ø HTML: formatting content

• Protocol for exchanging information: HTTP

URL – Uniform Resource Locator

• A unique identifier for an object on WWW

• URL format
<protocol>://<host>:<port>/<path>?query_string
– Protocol: method for transmission or interpretation of the object, e.g.

http, ftp, Gopher
– Host: DNS name or IP address of the host where object resides

– Path: pathname of the file that contains the object
– Query_string: name/value pairs sent to app on the server

• An example
http://www.nju.edu.cn:8080/somedir/page.htm

Hyper Text Transfer Protocol (HTTP)

• Client-server architecture
Ø Server is “always on” and “well known”

Ø Clients initiate contact to server

• Synchronous request/reply protocol
Ø Runs over TCP, Port 80

• Stateless
• ASCII format

Ø Before HTTP/2

PC running
Explorer

Server
running
Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

Steps in HTTP request/response
Client Server

TCP syn

TCP syn + ack

TCP ack + HTTP GET

...

Establish
connection

Request
response

Client
request

Close connection

Method types (HTTP 1.1)

• GET, HEAD
• POST

Ø Send information (e.g., web forms)
• PUT

Ø Uploads file in entity body to path specified in URL field
• DELETE

Ø Deletes file specified in the URL field

Client-to-server communication

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr
(blank line)

• HTTP Request Message
• Request line: method, resource, and protocol

version

request line

header
lines

carriage return line feed
indicates end of message

Server-to-client communication
• HTTP Response Message

• Status line: protocol version, status code, status phrase
• Response headers: provide information
• Body: optional data

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Jan 2017 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 2006 ...
Content-Length: 6821
Content-Type: text/html
(blank line)
data data data data data ...

status line
(protocol, status code,
status phrase)

header lines

data
e.g., requested HTML file

HTTP is stateless

• Each request-response treated independently
Ø Servers not required to retain state

• Good: Improves scalability on the server-side
Ø Failure handling is easier
Ø Can handle higher rate of requests
Ø Order of requests doesn’t matter

• Bad: Some applications need persistent state
Ø Need to uniquely identify user or store temporary info
Ø e.g., Shopping cart, user profiles, usage tracking, …

Question

• How does a stateless protocol keep state?

State in a stateless protocol: Cookies
• Client-side state maintenance

Ø Client stores small state on behalf of server
Ø Client sends state in future requests to the server

• Can provide authentication
Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

DB

Store Cookie

A Cookies Example
Client Server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database

HTTP performance: Object request response time

• RTT (round-trip time)
Ø Time for a small packet to travel

from client to server and back

• Response time
Ø 1 RTT for TCP setup
Ø 1 RTT for HTTP request and first

few bytes
Ø Transmission time
Ø Total = 2RTT + Transmission Time

Client Server
TCP syn

TCP syn + ack

TCP ack + HTTP GET

RTT

RTT

Tx

Non-persistent connections

• Default in HTTP/1.0
• 2RTT+△ for each object in the HTML file!

Ø One more 2RTT+△ for the HTML file itself

• Doing the same thing over and over again
Ø Inefficient

Concurrent requests and responses

• Use multiple connections in
parallel

• Does not necessarily
maintain order of responses

Ø Client = J
Ø Content provider = J
Ø Network = L Why?

R1
R2 R3

T1

T2 T3

Client

Server

Persistent connections

• Maintain TCP connection across multiple requests
Ø Including transfers subsequent to current page
Ø Client or server can tear down connection

• Advantages
Ø Avoid overhead of connection set-up and tear-down
Ø Allow underlying layers (e.g., TCP) to learn about RTT and

bandwidth characteristics
• Default in HTTP/1.1

Pipelined requests & responses

• Batch requests and
responses to reduce the
number of packets

• Multiple requests can be
contained in one TCP
segment

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Caching

• Why does caching work?
Ø Exploits locality of reference

• How well does caching work?
Ø Very well, up to a limit
Ø Large overlap in content
Ø But many unique requests

ü A universal story!
ü Effectiveness of caching grows logarithmically with size

Caching: How

• Modifier to GET requests:
• If-modified-since – returns “not modified” if

resource not modified since specified time

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
If-modified-since: Wed, 18 Jan 2017 10:25:50 GMT
(blank line)

Caching: How

• Modifier to GET requests:
Ø If-modified-since – returns “not modified” if resource not

modified since specified time

• Client specifies “if-modified-since” time in request

• Server compares this against “last modified” time of
resource

• Server returns “Not Modified” if resource has not changed

• …. or a “OK” with the latest version otherwise

Caching: How

• Modifier to GET requests:
Ø If-modified-since – returns “not modified” if resource not

modified since specified time

• Response header:
Ø Expires – how long it’s safe to cache the resource

Ø No-cache – ignore all caches; always get resource directly
from server

Caching: Where?

• Options
ØClient (browser)
ØForward proxies
ØReverse proxies
ØContent Distribution Network

Caching: Where?
• Many clients transfer same information

• Generate unnecessary server and network load
• Clients experience unnecessary latency

Server

Clients

Tier-1 ISP

ISP-1 ISP-2

Caching with Reverse Proxies
• Cache documents close to server

• Decrease server load
• By content provider

Clients

Tier-1 ISP

ISP-1 ISP-2

Reverse proxies

Caching with Forward Proxies
• Cache documents close to clients

• Reduce network traffic and decrease latency
• By ISPs or enterprises

Clients

Tier-1 ISP

ISP-1 ISP-2

Reverse proxies

Forward proxies

Internet Applications

• Internet Applications Overview
• WWW and HTTP
• Electronic Mail
• Domain Name Service (DNS)
• File Transfer Protocol (FTP)
• Content Distribution Networks (CDNs)

Electronic Mail

• One of most heavily used apps on Internet

• SMTP: Simple Mail Transfer Protocol
– Delivery of simple text messages

• MIME: Multi-purpose Internet Mail Extension
– Delivery of other types of data, e.g. voice, images, video clips

• POP: Post Office Protocol
– Msg retrieval from server, including authorization and download

• IMAP: Internet Mail Access Protocol
– Manipulation of stored msgs on server

Components of Email System
User Agent
• Composing, editing, reading mail

messages
• e.g. Eudora, Outlook, Foxmail, Netscape

Messenger

• Outgoing, incoming mail messages
stored on server

Mail Servers (Host)
• Mailbox contains incoming mail

messages for user
• Message queue of outgoing mail

messages
• SMTP protocol between mail servers to

send mail messages

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

3 Stages of Mail Delivery

• 1st Stage
– Email goes from local user agent to the local SMTP server
– User agent acts as SMTP client
– Local server acts as SMTP server

• 2nd Stage
– Email is relayed by the local server to the remote SMTP server
– Local server acts as SMTP client now

• 3rd Stage
– The remote user agent uses a mail access protocol to access the mailbox

on remote server
– POP3 or IMAP4

Illustration of Mail Delivery

Pop3, IMAP4, or HTTP

RFC 822, MIME

A Mail Delivery Scenario
• 1) Alice uses UA to compose a mail message and to bob@someschool.edu
• 2) Alice’s UA sends mail to her mail server using SMTP, mail placed in

message queue

• 3) Client side of SMTP opens TCP connection with Bob’s mail server
• 4) SMTP client sends Alice’s mail over the TCP connection

• 5) Bob’s mail server places the mail in Bob’s mailbox
• 6) Bob invokes his UA to read the mail, e.g. by Pop3

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

SMTP Transaction

3 phases of transfer
• Handshaking (greeting)
• Transfer of one or more

mails data
• Close connection

Command/response interaction
n Commands: ASCII text
n Response: status code and phrase

An Email Message
• Header lines, e.g.

– To: Alice@sina.com
– From: Bob@gmail.com
– Subject: Dinner tonight

• Body
– Mail contents, ASCII characters only

header

body

blank line

n Mail destinations

Mail Access Protocols
• SMTP: delivery/storage to receiver’s server

• Mail access protocol: mail retrieval from server
• POP: Post Office Protocol [RFC 1939]

– Authorization (agent <-->server) and download

• IMAP: Internet Mail Access Protocol [RFC 1730]
– more features, including manipulation of stored mails on server

• HTTP: gmail, Hotmail, Yahoo!, etc.

Internet Applications

• Internet Applications Overview
• WWW and HTTP
• Electronic Mail
• Domain Name Service (DNS)
• File Transfer Protocol (FTP)
• Content Distribution Networks (CDNs)

Domain Name Service (DNS)
• Function

– Map “domain names” into IP addresses
– e.g. www.baidu.com à 119.75.217.109

• Domain Name System
– Distributed database implemented in hierarchy of many name servers
– App-layer protocol host and name servers to communicate to resolve

“domain names”
– Load balancing: set of IP addresses for one server name

Q: why not centralize DNS?
n single point of failure
n traffic volume
n distant centralized database
n maintenance

A: doesn’t scale!

Goals

• Uniqueness: no naming conflicts
• Scalable

Ø Many names and frequent updates (secondary)
• Distributed, autonomous administration

Ø Ability to update my own (machines’) names
Ø Don’t have to track everybody’s updates

• Highly available
• Lookups are fast
• Perfect consistency is a non-goal

How?

• Partition the namespace

• Distribute administration of each partition
ØAutonomy to update my own (machines’) names
ØDon’t have to track everybody’s updates

• Distribute name resolution for each partition

• How should we partition things?

Key idea: Hierarchy

• Three intertwined hierarchies
ØHierarchical namespace

üAs opposed to original flat namespace
ØHierarchically administered

üAs opposed to centralized
Ø (Distributed) hierarchy of servers

üAs opposed to centralized storage

Hierarchical namespace

• “Top Level Domains” are at the top
• Domains are subtrees

Ø e.g., .edu, umich.edu, eecs.umich.edu
• Name is leaf-to-root path

Ø cse.eecs.umich.edu
• Depth of tree is arbitrary (limit 128)
• Name collisions trivially avoided

Ø Each domain is responsible

root

edu com gov mil org net uk fr

umich berkeley

eecs law

cse

…

Hierarchical administration

n A zone corresponds to an administrative
authority that is responsible for that portion
of the hierarchy
n e.g., UMich controls names: *.umich.edu
n e.g., EECS controls names: *.eecs.umich.edu

root

edu com gov mil org net uk fr

umich berkeley

eecs law

cse

…

ICANN/IANA

Hierarchy of DNS Servers
• Root name servers

– Contacted by local name server that can not resolve name

• Top-level domain servers
– Responsible for com, org, net, edu, etc, and all top-level country

domains, e.g. cn, uk, fr

• Authoritative DNS servers
– Organization’s DNS servers, providing authoritative hostname to IP

mappings

• Local Name Servers
– Maintained by each residential ISP, company, university
– When host makes DNS query, query is sent to its local DNS server

DNS: root name servers

• root name server:
– returns IP mappings of TLD servers

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

TLD, authoritative servers

• Top-level domain (TLD) servers:
– responsible for com, org, net, edu, aero, jobs, museums, and all

top-level country domains, e.g.: uk, fr, ca, jp
– Network Solutions maintains servers for .com TLD
– Educause for .edu TLD

• Authoritative DNS servers:
– organization’s own DNS server(s), providing authoritative

hostname to IP mappings for organization’s named hosts
– can be maintained by organization or service provider

Local DNS name server

• Does not strictly belong to hierarchy

• Each ISP (residential ISP, company, university) has one
– also called “default name server”

• When host makes DNS query, query is sent to its local DNS
server
– has local cache of recent name-to-address translation pairs (but

may be out of date!)
– acts as proxy, forwards query into hierarchy

DNS Name Resolution Example

• Bob at cis.poly.edu wants
IP address for Alice at
gaia.cs.umass.edu

n Iterated query:
n Contacted server replies with

name of next server to
contact

n Host-Server: recursive query
n Server-Server: iterative query

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS
server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS
server

DNS Records
• A DNS resource record (RR)

RR format: (name, value, type, ttl)

n “Name” is the domain name, “type” denotes how “value” is
explained
n e.g. Name Server records (NS), Mail Exchangers (MX), Host IP

Address (A), Canonical name (CNAME)

n Examples
n (networkutopia.com, dns1.networkutopia.com, NS, 32768)
n (dns1.networkutopia.com, 212.212.212.1, A, 5600)

DNS protocol

• Query and Reply messages; both with the same
message format
• Header: identifier, flags, etc.

• Plus resource records

• See text/section for details

• Client–server interaction on UDP Port 53
• Spec supports TCP too, but not always implemented

DNS caching

• Performing all these queries takes time
Ø Up to 1-second latency before starting download

• Caching can greatly reduce overhead
Ø The top-level servers very rarely change
Ø Popular sites (e.g., www.cnn.com) visited often
Ø Local DNS server often has the information cached

• How DNS caching works
Ø DNS servers cache responses to queries
Ø Responses include a “time to live” (TTL) field
Ø Server deletes cached entry after TTL expires

Internet Applications

• Internet Applications Overview
• WWW and HTTP
• Electronic Mail
• Domain Name Service (DNS)
• File Transfer Protocol (FTP)
• Content Distribution Networks (CDNs)

File Transfer Protocol (FTP)
• RFC 959, use TCP, port 21/20
• Transfer file to/from remote host

• Client/Server model, client side initiates file transfer (either to/from
remote)

• Deals with heterogeneous OS and file systems
• Needs access control on remote file system

Control and Data Connections

• FTP client contacts FTP server at port 21, opens a control connection

• Client authorized over control connection
• Client browses remote directory by sending commands over control

connection

• When server receives file transfer command, server opens 2nd TCP data
connection (for file) to client
– One connection for each file transferred

• After transferring one file, server closes data connection

• Control connection stays “out of band”
• FTP server maintains “user state”: current directory, earlier authentication

Illustration of FTP Session

FTP Commands and Responses
Sample commands:
• Sent as ASCII text over control

channel

• USER username
• PASS password

• LIST return list of file in current
directory

• RETR filename retrieves (gets) file

• STOR filename stores (puts) file onto
remote server

Sample return codes:
• Status code and phrase (as in

HTTP)

• 331 Username OK, password
required

• 125 data connection already
open; transfer starting

• 425 Can’t open data connection

• 452 Error writing file

BitTorrent

Internet Applications

• Internet Applications Overview
• WWW and HTTP
• Electronic Mail
• Domain Name Service (DNS)
• File Transfer Protocol (FTP)
• Content Distribution Networks (CDNs)

Content Distribution Networks (CDNs)
• Challenge

– Stream large files (e.g. video)
from single origin server in real
time

– Protect origin server from DDOS
attacks

• Solution
– Replicate content at hundreds of

servers throughout Internet
– CDN distribution node coordinate

the content distribution
– Placing content close to user

Origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

Content Replication

• Content provider (origin server) is CDN customer

• CDN replicates customers’ content in CDN servers

• When provider updates content, CDN updates its
servers

• Use authoritative DNS server to redirect requests

Supporting Techniques
• DNS

– One name maps onto many addresses

• Routing
– Content-based routing (to nearest CDN server)

• URL Rewriting
– Replaces “http://www.sina.com/sports/tennis.mov” with

“http://www.cdn.com/www.sina.com/sports/tennis.mov”

• Redirection strategy
– Load balancing, network delay, cache/content locality

CDN Operation

1’ URL rewriting – get
authoritative server

1. Get near CDN server IP
address

2. Warm up CDN cache

3. Retrieve pages/media from
CDN Server

Client Origin Server

CDN authoritative
ServerCDN Server

1

1

3 2

课程习题（作业）——截止日期：3月11日晚23:59

• 课本110-115页：第R3、R5、R16、P9、P22题

• 提交方式：https://selearning.nju.edu.cn/（教学支持系统）

• 命名：学号+姓名+第*章。

• 若提交遇到问题请及时发邮件或在下一次上课时反馈。

https://selearning.nju.edu.cn/

课程习题（作业）——截止日期：3月11日晚23:59

IMAP

课程习题（作业）——截止日期：3月11日晚23:59

=20Gb

助教信息

甘世维 博士 计算机学院 sw@smail.nju.edu.cn

刘晓 博士 智能软件与工程学院 602024720002@smail.nju.edu.cn

郭博文 博士 智能软件与工程学院 bowen@smail.nju.edu.cn

德斯别尔 硕士 智能如软件与工程学院 522024720002@smail.nju.edu.cn

提问

殷亚凤
智能软件与工程学院

苏州校区南雍楼东区225
yafeng@nju.edu.cn，https://yafengnju.github.io/

Q & A

